LeetCode 222.完全二叉树的节点个数

题目描述

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

示例 1:

输入:root = [1,2,3,4,5,6]
输出:6

示例 2:

输入:root = []
输出:0

示例 3:

输入:root = [1]
输出:1

提示:

  • 树中节点的数目范围是[0, 5 * 10^4]
  • 0 <= Node.val <= 5 * 10^4
  • 题目数据保证输入的树是 完全二叉树

进阶:遍历树来统计节点是一种时间复杂度为 O(n) 的简单解决方案。你可以设计一个更快的算法吗?

思路

按照普通二叉树的思路来求解:

递归法

使用后序遍历

递归三部曲:

  1. 确定递归函数的参数和返回值。参数就是传入树的根节点,返回就返回以该节点为根节点二叉树的节点数量,所以返回值为int类型。
  2. 确定终止条件。如果为空节点的话,就返回0,表示节点数为0。
  3. 确定单层递归的逻辑。先求左子树的节点数量,再求右子树的节点数量,最后取总和再加一 (加1是因为算上当前中间节点)就是目前节点为根节点的节点数量。

时间复杂度:O(n)

迭代法

只需要稍微改动一下模版,将变量result用于统计节点数量即可。

时间复杂度:O(n)

按照完全二叉树的特性来求解:

递归法

在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1)  个节点。

完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满。

对于情况一,可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1。

对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。

如果整个树不是满二叉树,就递归其左右孩子,直到遇到满二叉树为止,用公式计算这个子树(满二叉树)的节点数量。

关键在于如何去判断一个左子树或者右子树是不是满二叉树呢?

在完全二叉树中,如果递归向左外遍历的深度等于递归向右外遍历的深度,那说明就是满二叉树,否则不是满二叉树。

本方法的巧妙之处在于计算左外侧深度(一直往左)和右外侧深度(一直往右)时,中间的节点是不需要遍历的,这样就节省了时间,而且能够直接使用满二叉树的公式来计算节点数。

终止条件:

  • 如果为空节点的话,就返回0,表示节点数为0。
  • 如果是满二叉树的话,就返回满二叉树的节点数:2^树深度 - 1

代码

C++版:

方法一:递归法(后序遍历)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    // 递归法,后序遍历
    int dfs(TreeNode* node){
        if(node==NULL) return 0;
        int leftNum=dfs(node->left); // 左
        int rightNum=dfs(node->left); // 右
        int sum=1+leftNum+rightNum; // 中
        return sum;
    }
    int countNodes(TreeNode* root) {
        return dfs(root);
    }
};

方法二:迭代法(层序遍历)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    // 迭代法,层序遍历
    int countNodes(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        int result = 0;
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                result++;   // 记录节点数量
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return result;
    }
};

方法三:按照完全二叉树的特性来求解

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    // 递归法,利用完全二叉树的特性,后序遍历
    int dfs(TreeNode* node){
        // 终止条件
        if(node==NULL) return 0;
        TreeNode* left=node->left;
        TreeNode* right=node->right;
        int leftHeight=0;
        int rightHeight=0;
        // 统计左侧深度
        while(left){
            left=left->left;
            leftHeight++;
        }
        // 统计右侧深度
        while(right){
            right=right->right;
            rightHeight++;
        }
        // 另外一个终止条件:遇到满二叉树
        if(leftHeight==rightHeight){
            // 位运算,向左移leftHeight位,相当于2的(leftHeight+1)次方
            return (2<<leftHeight)-1;
        }

        int leftNum = dfs(node->left); // 左
        int rightNum = dfs(node->right); // 右
        int sum = leftNum + rightNum + 1; // 中
        return sum;

    }
    int countNodes(TreeNode* root) {
        return dfs(root);
    }
};

Python版:

方法一:递归法(后序遍历)

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    # 递归法,后序遍历
    def getNodesNum(self, cur):
        if not cur:
            return 0
        leftNum = self.getNodesNum(cur.left) #左
        rightNum = self.getNodesNum(cur.right) #右
        treeNum = leftNum + rightNum + 1 #中
        return treeNum
    def countNodes(self, root: Optional[TreeNode]) -> int:
        return self.getNodesNum(root)

方法二:迭代法(层序遍历)

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    # 迭代法,层序遍历
    def countNodes(self, root: Optional[TreeNode]) -> int:
        queue = collections.deque()
        if root:
            queue.append(root)
        result = 0
        while queue:
            size = len(queue)
            for i in range(size):
                node = queue.popleft()
                result += 1 #记录节点数量
                if node.left:
                    queue.append(node.left)
                if node.right:
                    queue.append(node.right)
        return result

方法三:按照完全二叉树的特性来求解

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    # 递归法,利用完全二叉树的特性,后序遍历
    def countNodes(self, root: Optional[TreeNode]) -> int:
        if not root:
            return 0
        left = root.left
        right = root.right
        leftHeight = 0 
        rightHeight = 0
        while left: #求左子树深度
            left = left.left
            leftHeight += 1
        while right: #求右子树深度
            right = right.right
            rightHeight += 1
        if leftHeight == rightHeight:
            return (2 << leftHeight) - 1 
        return self.countNodes(root.left) + self.countNodes(root.right) + 1

需要注意的地方

1.leftHeight和rightHeight初始化为0是为了能够让下面求指数变得方便(可以使用位运算),如果不使用位运算的话应初始化为1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值