pandas series缺失值错误值nan的处理

本文介绍了如何使用Pandas库在Python中处理数据框(DataFrame)中的缺失值。通过`isnull()`和`notnull()`函数可以检查数据中是否存在NaN,而`dropna()`和`fillna()`则分别用于删除和填充这些缺失值。你可以选择用0填充,或者使用平均值来填补NaN。注意在进行填充操作时,需重新赋值给DataFrame以保存更改。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#如果是nan会返回False,没有nan返回True
df.isnull()
#如果是nan会返回True,没有nan返回False
df.notnull()
#提取值,剔除nan值
df[df.notnull()]
#提取值,剔除nan值
df.dropna()
#将nan值赋值为0,注意!比如重新赋值给df变量,否则不会保存
df = df.fillna(0)
#将nan值赋值为平均值,注意!比如重新赋值给df变量,否则不会保存
df = df.fillna(df.,mean())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_50980171

你的鼓励就是对我莫大的支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值