轻量级的想法,节省内存占用

这篇博客探讨了轻量化深度卷积模型的发展,特别是Ghost模块和MobileNetV3的结合。Ghost模块通过低成本计算获取冗余信息,以提升模型效率。MobileNetV3利用硬件感知的NAS自动搜索架构,减少了计算量但保持高性能。 ShuffleNetV2则提出了轻量化模型设计原则,包括最小化内存访问、避免过多组卷积等。华为的Ghost模块以小部分输出进行线性操作后与原始特征图相加,达到节省计算资源的效果。在此基础上,文章介绍了使用Ghost模块替换MobileNetV3颈部的设计,以及引入的宽度因子,它与速度成正比,性能成反比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景:轻量化深度卷积模型

做到可以与主流模型相比计算量减少了,但是性能却可以一同媲美

一路走来,相关模型的变化

Mobile nets:

v1:深度可分离卷积
v2:反残差,线性瓶颈层(使用线性激活函数)
v3:结合硬件感知的NAS…(自动搜索架构)就很智能不需要人工一个个去尝试,相对来讲更好,也因此你会发现他的那个扩张尺寸很不规律

shufflenets:

v1:点卷积去掉,换成组卷积+shuffle操作,减少点卷积的计算量
v2:提出轻量化模型设计指南:
(a)相同的通道宽度可用最小化内存访问
(b)过多的组卷积会增加内存的访问成本
(c)网络碎片会减低并行度(比如可以想到FPN,很多shortcut会占用很大的显存,从而拖慢速度),所以我们v2没有太多的网络分支
(d)元素级别的操作能减少就减少(特征图那些骚操作)

华为工程当时提出的一个Ghost模块

背景:

冗余信息可以确保输入信息的全面理解,所以作者不打算去除他,而是选择用更低成本的计算量去获取他

The Ghost model

在这里插入图片描述
这是他的那个ghostt模块,他将一小部分输出dfm再进行一些线性操作得到,然后与原来的fm进行add(节省计算量),最后是和我们标准的卷积得到的是一样的尺寸

backbone

使用的是mobilenetsv3的框架,其中将他的颈部替换成ghost模块。

还提出了宽度因子,与速度成正比,性能成反比

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值