
神经网络
seven_不是赛文
从此就是个烂人啦
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
轻量级的想法,节省内存占用
背景:轻量化深度卷积模型做到可以与主流模型相比计算量减少了,但是性能却可以一同媲美一路走来,相关模型的变化Mobile nets:v1:深度可分离卷积v2:反残差,线性瓶颈层(使用线性激活函数)v3:结合硬件感知的NAS…(自动搜索架构)就很智能不需要人工一个个去尝试,相对来讲更好,也因此你会发现他的那个扩张尺寸很不规律shufflenets:v1:点卷积去掉,换成组卷积+shuffle操作,减少点卷积的计算量v2:提出轻量化模型设计指南:(a)相同的通道宽度可用最小化内存访问(b)过原创 2021-09-07 16:43:38 · 254 阅读 · 0 评论 -
add和concat的深度特征融合
concat是通道数的增加;add是特征图相加,通道数不变例子Resnet是做值的叠加,通道数是不变的DenseNet是做通道的合并DenseNet的不足在于由于需要进行多次Concatnate操作,数据需要被复制多次,显存容易增加得很快,需要一定的显存优化技术。另外,DenseNet是一种更为特殊的网络,ResNet则相对一般化一些,因此ResNet的应用范围更广泛。总之,concat层多用于利用不同尺度特征图的语义信息,将其以增加channel的方式实现较好的性能,但往往应该在BN之后再原创 2021-08-26 11:24:48 · 1593 阅读 · 0 评论 -
NMS非极大值抑制
目标检测的过程中在同一目标的位置上会产生大量的候选框,这些候选框相互之间可能会有重叠,此时我们需要利用非极大值抑制找到最佳的目标边界框,消除冗余的边界框。原创 2021-08-16 10:19:51 · 151 阅读 · 0 评论 -
tensorflow2.0版本问题
当我们的tensorflow版本是2.x的时候,如果需要用到tensorflow1.x写的代码,需要加上’import tensorflow.compact.v1 as tf '。原创 2021-08-03 23:23:51 · 178 阅读 · 0 评论 -
目标检测中正负样本理解
正样本是待检测的目标,比如检测人脸时,人脸是正样本,非人脸则是负样本或者根据你设定的iou阈值比较。原创 2021-07-29 12:43:43 · 770 阅读 · 0 评论 -
end to end(端到端训练)
端到端训练简单的理解就是不要预处理和特征提取,直接把原始数据扔进去得到最终结果,就是给模型更多自我调整的能力。原创 2021-07-29 00:18:04 · 577 阅读 · 0 评论