自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(94)
  • 收藏
  • 关注

原创 流体力学智能升级:掌握Fluent+AI解决高成本与复杂流场难题

## Fluent与AI融合解决流体力学难题。

2025-07-22 14:25:00 392

原创 从FDTD仿真到光学神经网络:机器学习在光子器件设计中的前沿应用工坊

评估指标包括光学效率(>90%为优)、器件尺寸压缩比(与波长尺度对比)和计算速度(相比传统FDTD加速100-1000倍)。常见的代理模型包括深度神经网络(DNN)、卷积神经网络(CNN)或图神经网络(GNN),用于预测光学响应(如透射谱、场分布)。机器学习在光子器件设计中的作用体现在优化器件参数(如纳米结构尺寸、材料折射率分布)、加速逆设计过程(直接生成满足性能的目标结构)以及实现端到端的光学系统建模。基于超表面的衍射神经网络:通过设计纳米柱的几何参数,实现光场调制与线性变换。

2025-07-22 14:20:58 715

原创 【AI+BMS融合创新:智能电池管理从算法到落地 】

传统电池管理系统(BMS)依赖固定规则和阈值控制,难以应对复杂工况下的电池动态特性。采用LSTM或Transformer网络处理时序数据,动态修正荷电状态(SOC)和健康状态(SOH)的预测误差,精度提升可达5%-10%。通过Q-learning或PPO算法模拟多目标优化场景,在能量效率与电池寿命间实现平衡,实验数据显示循环寿命延长15%-20%。新型神经架构搜索(NAS)实现算法自优化,量子计算助力高维电池建模,区块链技术完善电池全生命周期数据溯源。

2025-07-22 14:09:39 326

原创 量子级操控:超表面+逆向设计,把拓扑光学“塞”进光子晶体 ——从麦克斯韦方程到片上量子门的一站式指南

关键词:超表面、逆向设计、机器学习、光子晶体、拓扑光学、量子光学、电磁仿真、Python 代码示例。一句话总结:让 AI 生成的超表面去雕刻拓扑光子晶体的边界,从而在芯片上“打印”任意量子光路。中山大学团队已验证:无需外加磁场,仅靠蜂窝晶格反演对称性破缺即可产生赝自旋-锁定的边界态。用 AI 设计的 布拉格光栅 = 拓扑保护的光纤-芯片耦合器。用 AI 设计的 超原子 = 片上相移器 / 耦合器。用 AI 设计的 缺陷孔洞 = 任意弯曲波导。拓扑光子晶体的“积木”——能谷霍尔结构。

2025-07-16 14:55:40 634

原创 超构透镜革命:指甲盖上的显微镜,未来手机拍照就靠它?

2016年,《Light: Science & Applications》的一项研究(DOI: 10.1038/lsa.2016.76)首次展示了可见光波段高效超构透镜。同年,《Light: Science & Applications》(DOI: 10.1038/s41377-019-0205-3)利用超构表面高效生成并检测光学涡旋(携带轨道角动量的光束)。早期超构透镜面临效率低、工作带宽窄的瓶颈。或许不久后,我们手中的轻薄设备将隐藏着媲美单反的镜头,而这一切,始于实验室里那些比沙粒还小的纳米柱阵列。

2025-07-14 15:16:17 252

原创 【超表面逆向设计及前沿应用(从基础入门到论文复现)】

超表面逆向设计不仅能够实现传统光学元件的功能,还能够探索全新的光学现象和应用,如超紧凑的光学系统、高效率的光学滤波器、以及能够动态调控光场的超表面器件。据调查,目前在Nature和Science杂志上发表的超表面逆向设计方面的论文主要集中以下几个方面: 1.新型光学功能的实现:研究如何通过逆向设计实现具有新颖光学功能(如负折射、光学隐身、超分辨率成像等)的超表面。6.拓扑光学和新型光子晶体:探索基于超表面的拓扑光学结构,以及新型光子晶体的设计和应用。

2025-07-14 15:09:15 455

原创 【基于耦合模理论逆向设计连续谱中束缚态吸波器论文复现和分析】

耦合模理论(Coupled Mode Theory, CMT)是分析波导、谐振腔等系统中模式耦合行为的经典方法,常用于描述光场或电磁场在周期性结构或共振系统中的能量交换。在连续谱中束缚态(Bound States in the Continuum, BIC)的研究中,CMT可用于解析设计高Q值共振结构,如吸波器。

2025-07-10 16:57:43 1230

原创 【基于Fluent和深度学习算法驱动的流体力学计算与应用】

无缝衔接传统与新兴方法:从Fluent软件实战到深度学习算法(CNN、GANs、Neural ODE、PINN),系统讲解如何利用Fluent生成数据驱动AI训练(如流场超分辨、特征提取)。案例贯穿:传统CFD案例,CFD数据降维案例,CFD数据导出制作AI数据及训练、神经网络求解微分方程问题、神经网络流场信息预测、物理融合神经网络湍流模拟等前沿应用案例。覆盖完整技术链:包含数据预处理(PCA/SVD降维)、模型构建(Pytorch实现)、物理约束嵌入(PINN)、结果可视化(Tecplot)全流程。

2025-07-10 16:54:15 712

原创 【数据驱动视角下的流体模拟:CFD 与深度学习(GANs/PINN)在圆柱绕流及机翼分析中的应用】

例如,基于PINN的二维剪切流圆柱绕流场重构方法,利用开源CFD软件OpenFOAM生成的数值模拟数据构建训练集,通过引入剪切流边界条件的PINN模型,实现了对圆柱绕流场的有效重构。尽管数据驱动的流体模拟方法在圆柱绕流和机翼分析中取得了一定的进展,但仍面临一些挑战。未来的研究可以进一步探索多范式融合的方法,结合CFD、数据同化、深度学习和数字孪生等技术,以实现更高效、更准确的流体模拟。数据驱动的流体模拟方法,特别是CFD与深度学习(GANs/PINN)的结合,为圆柱绕流及机翼分析提供了新的视角和工具。

2025-07-07 15:46:01 515

原创 【数据驱动流体革命:当AI遇上圆柱绕流与机翼优化】

令人惊叹的是,仅需4-68个监督点数据,PINN就能达到与传统CFD相当的精度。传统的计算流体力学(CFD)方法依赖复杂的网格划分和昂贵的数值计算,一次完整的飞行器外流场分析可能需要超级计算机运行数天甚至数周。从飞机机翼到心血管支架,从风力发电机到超音速列车,这场静悄悄的技术革命将重塑无数产业的研发范式,让人类在流体世界中获得前所未有的掌控力。在航空航天领域,翼型的气动性能直接影响飞行器效率。当深度学习的“神经元”开始理解纳维-斯托克斯方程的“语言”,流体世界的奥秘正在以一种前所未有的方式被重新诠释。

2025-07-07 15:16:50 816

原创 机器学习驱动的智能化电池管理技术与应用

GB38031-2025《电动汽车用动力蓄电池安全要求》的强制实施,特别是“5分钟热失控预警”技术要求,亟需通过智能化电池管理技术(BMS)实现电池状态的高精度感知、健康度的可靠评估、寿命的准确预测及安全隐患的早期智能诊断,以保障人民生命财产安全,支撑国家新能源战略与产业竞争力的提升。学术研究趋势方面,机器学习引领BMS创新浪潮。深度学习模型因其强大的时序特征提取、空间特征捕获和长序列建模能力,在SOC/SOH估计、RUL预测、退化轨迹建模、故障诊断等领域取得显著优于传统方法的精度,是当前活跃的研究方向。

2025-07-04 16:16:43 976

原创 【圆柱绕流 / 机翼模拟 AI 加速:工业级 Fluent+GANs/PINN 案例全解析】

本次培训的讲师来自国家“985工程”重点高校,主要从事物理和数据驱动的力学建模仿真研究,近年来发表SCI论文15篇,授权三项发明专利,研究方向包括计算流体力学、流体力学中的机器学习方法、数据驱动的计算力学、有限元方法等。

2025-07-04 10:27:47 850

原创 【电场为核:超表面阵列调控电磁世界的奥秘】

面向未来,以电场为核心的超表面研究将持续推动成像、传感、通信、能源、量子技术等领域的革新,在微纳尺度上书写光操控的新篇章。近场相互作用:紧密排布的单元间通过近场耦合(如等离激元耦合、光子相互作用)显著影响整体电场分布,是设计复杂功能(如非局域超表面、拓扑态)的基础。光与物质相互作用桥梁:强局域电场极大增强光与附近物质(分子、量子点、二维材料)的相互作用效率,是传感、非线性增强、量子发射器调控的核心机制。集成相变材料(GST)、液晶、二维材料(石墨烯)、MEMS、热光/电光效应是研究热点。

2025-07-02 11:19:00 239

原创 【深入浅出:计算流体力学(CFD)基础与核心原理--从NS方程到工业仿真实践】

计算流体力学(Computational Fluid Dynamics, CFD) 是通过数值方法求解流体流动控制方程,实现对流场物理量(速度、压力、温度等)的预测技术。关键词:#CFD、#Navier-Stokes方程、#有限体积法、#湍流模型、#网格收敛性、#工业仿真验证。编程:Python(PyFoam)、C++(OpenFOAM二次开发)边界条件设置:入口(速度/压力)、出口、壁面(无滑移/滑移)类型:结构化网格(六面体)、非结构化网格(四面体/多面体)工程优化:k-ω SST(兼顾精度与效率)

2025-07-01 16:53:09 746

原创 超表面逆向设计及前沿应用(从基础入门到论文复现)

1.新型光学功能的实现:研究如何通过逆向设计实现具有新颖光学功能(如负折射、光学隐身、超分辨率成像等)的超表面。4.多波长和多角度操作:设计能够在不同波长和不同入射角度下保持高性能的超表面,这对于成像和显示技术尤为重要。5.量子光学和光子学:利用超表面操控量子态,探索在量子通信量子计算和量子信息处理中的应用。3.动态可调谐超表面:开发能够动态调整其光学特性的超表面,例如通过电场、温度或光场控制。6.拓扑光学和新型光子晶体:探索基于超表面的拓扑光学结构,以及新型光子晶体的设计和应用。

2025-06-30 13:55:57 785

原创 【机器学习赋能的智能光子学器件系统研究与应用】

4.非线性光学与光子芯片:非线性光学材料和非厄米拓扑光子学为高性能片上处理方案提供了新的可能性,智能光子芯片在全光计算、信号处理和量子技术等领域具有广泛的应用前景。1.光子器件的逆向设计:通过机器学习,特别是深度学习,可以高效地进行光子器件的逆向设计,这在传统的多参数优化问题中尤为重要。5.智能光子系统的多任务优化:通过深度学习与拓扑优化的结合,可以同时优化多个光子器件的功能,提高设计效率并保证性能。3.光子神经网络:利用光子器件构建的神经网络可以进行快速的矩阵-向量运算,加速深度学习算法的执行。

2025-06-30 13:45:34 247

原创 【基于Fluent和深度学习算法驱动的流体力学计算与应用】

目前在Nature和Science杂志上发表的深度学习驱动的流体力学方面的论文主要集中以下几个方面:1、物理模型与深度学习的融合:研究如何将传统的物理模型与深度学习算法相结合,以提高流体力学问题的预测准确性和计算效率。3、数据驱动的流体力学研究:通过收集和分析大量的流体力学实验和计算数据,使用深度学习模型来识别流动特征和预测流动行为。6、流体力学中的优化问题:利用深度学习进行流体力学中的优化问题研究,包括形状优化、流场控制优化等,以实现更优的流体动力学性能。

2025-06-30 13:41:45 662

原创 【基于超表面实现电磁感应透明(EIT)论文复现和讲解】

超表面由亚波长结构单元组成,通过设计单元结构激发明模(bright mode)和暗模(dark mode),二者耦合后形成类似原子系统中的EIT效应。明模直接与外部电磁场耦合,暗模仅通过近场耦合激发,干涉导致透射谱中出现透明窗口。优化目标为:明模谐振频率(如1.5 THz)与暗模频率相近但略有偏移(如1.48 THz)。提取透射谱(S21参数),观察EIT特征:在谐振频率处出现陡峭的透明窗口,伴随高Q值。通过电场分布验证明暗模的耦合,明模区域显示强电场辐射,暗模区域为局域化场。

2025-06-27 13:58:05 664

原创 【超表面基础概念 】

超表面(Metasurface)是一种二维形式的超材料,由亚波长尺寸的结构单元(Meta-atoms)周期性或非周期性排列组成。其核心原理是通过设计结构单元的几何形状和排列方式,实现对电磁波(如光、微波)的振幅、相位、偏振等特性的精准调控。结合优化算法(如遗传算法、拓扑优化)和电磁仿真软件(Lumerical、COMSOL)自动优化结构参数,以满足特定电磁响应目标。超表面作为新兴平台,有望推动光学器件微型化和智能化,未来可能在AR/VR、激光雷达、集成光子芯片等领域实现突破。

2025-06-27 13:55:49 383

原创 光场操控新突破!3D 光学信息处理迎来通用 PSF 工程时代--《自然》子刊:无需复杂算法,这一技术让 3D 光学成像实现 “即拍即得”念日

近日,加州大学洛杉矶分校(UCLA)的研究团队在《Light: Science & Applications》发表论文,提出了一种通用点扩散函数(PSF)工程技术,通过衍射处理器实现了任意 3D PSF 的光学合成,首次实现 “快照式 3D 多光谱成像”—— 无需轴向扫描、光谱滤镜或数字重构,即可直接获取三维场景的多波长信息。研究团队设计了一种由多层衍射表面组成的光学网络(类似神经网络的层状结构),通过深度学习优化每个表面的相位分布,使入射光在传播过程中被 “雕刻” 成任意所需的 3D PSF。

2025-06-26 17:01:51 439

原创 CFD工程师突围:用Neural ODE/PINN重构流体方程求解逻辑

6、流体力学中的优化问题:利用深度学习进行流体力学中的优化问题研究,包括形状优化、流场控制优化等,以实现更优的流体动力学性能。1、物理模型与深度学习的融合:研究如何将传统的物理模型与深度学习算法相结合,以提高流体力学问题的预测准确性和计算效率。3、数据驱动的流体力学研究:通过收集和分析大量的流体力学实验和计算数据,使用深度学习模型来识别流动特征和预测流动行为。5、流体力学中的不确定性量化:应用深度学习技术对流体力学中的不确定性进行量化和分析,以提高预测的可靠性。

2025-06-24 11:14:45 133

原创 【超表面逆向设计+机器学习光子学+智能光学成像暑期实训(论文复现/工业级案例/全栈技能)】

案例讲解:端到端的基于深度学习的散射介质散斑计算成像综合实例讲解:用一个纯相位镜头的灰度图像到高光谱图像(超光谱/解模糊/深度学习/点扩散函数设计/压缩成像)案例:具有高空间分辨率的宽带高光谱图像传感器(实践网络重构部分)案例操作:传播相位与几何相位超构单元仿真与平面超构透镜设计。实践:基本的全连接网络模型与卷积神经网络的搭建与训练。案例操作:片上的超构单元仿真与光学参数提取。案例操作:基于拓扑优化方法的分束器设计等…(一)基于拓扑优化的超表面偏振分束器设计。案例操作:基于粒子群算法的光分束器设计。

2025-06-23 11:31:37 1235

原创 lumerical fdtd老版本和现在的新版本在线偏振光方向为什么改变了

分析组升级(如 grating_s_parameters 替代旧版 s_parameters),需用户主动提取并计算偏振分量(如 S_polarization 数据需后处理才能获得圆偏振转换效率)3。偏振自由度扩展:新增 偏振态独立设置选项(如 Jones vector 输入),支持用户直接定义任意偏振方向(包括任意角度的线偏振或圆偏振),无需依赖坐标系旋转38。归一化简化:部分分析组(如 s_parameters)可能自动处理偏振分量归一化,但缺乏对复杂偏振态(如圆偏振)的直接支持3。

2025-06-23 11:28:34 414

原创 智能计算模拟:第一性原理+分子动力学+机器学习

授课讲师有着丰富的分子动力学与机器学习的使用经验,在《Nature Comunications》、《ACS Applied Materials & Interfaces》 、《Journal of Colloid and Interface Science》 、《Chemistry of Materials》、《Energy Storage Materials》等国际顶级期刊发表论文五十篇。这一前沿交叉领域的研究发展趋势呈现出高度集成化、智能化的特点,为我国科技创新注入源源不断的活力。

2025-06-20 11:27:36 157

原创 电磁场数值仿真技术及天线设计与应用

然而,HFSS和CST软件以其无以伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术使其成为高频结构设计的可靠工具和行业标准,已经广泛地应用于航空、航天、电子、半导体、计算机、通信等多个领域。Ø 特点及优势:通过案例对比两种仿真软件各自的特点及优势仿真步骤:总结采用两种仿真软件进行天线仿真的步骤和区别。Ø 天线类型、天线的辐射、增益、方向性Ø 阻抗匹配、带宽、极化、天线阵。通过多个具体案例讲解天线仿真的常用设置及其他边界条件和激励的应用及。

2025-06-20 11:24:07 365

原创 光速推理,能效革命:0.3mm²硅基衍射光神经网络芯片实测13800 TOPS,能效达10^-17 J/FLOP!

一个神经元包含三个相同尺寸的SSSD,通过改变SSSD的长度L(0-2.3 μm范围)精确调控光通过该神经元产生的相位延迟 (Δφ, 0-2π),等效于训练得到的复值透射系数。清华大学陈宏伟教授团队在《Nature Communications》上发表的创新性工作 [DOI: 10.1038/s41467-022-35772-7],成功将DONN的核心概念集成到了标准的硅基绝缘体上硅 (Silicon-on-Insulator, SOI) 光子芯片上,实现了高集成度、低功耗、高速的片上光计算加速器。

2025-06-20 11:17:53 485

原创 【智能光学计算成像技术与应用】

智能光学计算成像的一些关键进展和应用:

2025-06-19 14:39:41 501

原创 遗传算法优化光学超表面:智能设计突破纳米结构瓶颈

光学超表面设计本质上是一个高维、非线性、离散每个结构单元(如纳米砖柱、孔洞、十字架)有多个参数(长、宽、高、旋转角、材料),整个阵列的参数组合数量随单元数指数级增长。性能指标(如聚焦效率、工作带宽、偏振转换率、特定角度响应)往往无法用简单解析式表达,需依赖计算密集型电磁仿真(如FDTD, FDFD, RCWA)来评估。结构参数微小变化可能引起光学响应的剧烈跃变,目标函数存在多个局部最优解。实际制造通常要求结构参数取自有限的离散值(如特定刻蚀深度、材料库)。

2025-06-18 14:35:22 740

原创 【计算流体力学(CFD)学-绪论:打开虚拟世界的流体之门】

计算流体力学(CFD)已经深刻改变了我们研究流体、设计产品和理解自然的方式。它不再仅仅是理论研究的工具,更是现代工程实践中不可或缺的决策支持系统和创新引擎。从优化一架飞机的气动性能,到设计更高效的散热器,再到预测污染物在城市中的扩散,CFD的应用无处不在。然而,CFD不是魔术。它的预测精度高度依赖于对物理问题的深刻理解、合理的建模假设、高质量的网格、恰当的边界条件设置、合适的求解策略以及严格的验证与确认。“Garbage In, Garbage Out (垃圾进,垃圾出)”。

2025-06-18 14:10:01 1169

原创 机器学习在智能水泥基复合材料中的应用与实践

机器学习模型如随机森林(Random Forest)、支持向量机(SVM)和神经网络(Neural Networks)被用于预测水泥基材料的力学性能(如抗压强度、抗折强度)和耐久性(如氯离子渗透性、碳化深度)。例如,输入变量可能包括水灰比、掺合料比例、养护条件等,输出为强度或耐久性指标。基于声发射、光纤传感或压电阻抗数据的机器学习模型(如卷积神经网络CNN、长短期记忆网络LSTM)可识别材料内部的微裂纹或腐蚀。例如,CNN可用于分析声发射信号的时频特征,分类损伤类型(拉伸裂纹、剪切裂纹)。

2025-06-17 14:02:50 989

原创 机器学习驱动的智能化电池管理技术与应用

从电池性能的精确评估到复杂电池系统的智能监控,从数据驱动的故障诊断到电池寿命的预测优化,人工智能技术正以其强大的数据处理能力和模式识别优势,推动电池管理领域的技术进步。8.电池回收与二次利用:使用人工智能评估退役电池的状态,优化电池的回收和再利用流程。2.技术深度和实际应用:深入探讨人工智能和机器学习在电池管理中的应用,如SOC(荷电状态)估计、SOH(健康状态)估计、寿命预测等,并提供多个应用案例,如基于迁移学习的SOC估计、基于模型误差谱的SOH估计方法等,有助于学员理解理论与实践的结合。

2025-06-17 13:46:33 244

原创 【超表面逆向设计及前沿应用(从基础入门到论文复现)】

(四)基于形状优化的梯度超表面设计----(根据发表在Light&Science Application 上的论文)(五)基于遗传算法的超表面设计----(根据发表在Opto-Electronic Science 上的论文)(三)超表面偏振转换器件设计----(根据发表在Chinese optics letters 上的论文)(一)基于拓扑优化的超表面大角度聚合器设计----(根据发表在NANO LETTERS上的论文)2:基于超表面实现连续谱中束缚态(BIC)论文复现和讲解。

2025-06-16 15:10:24 1103

原创 【基于Fluent和深度学习算法驱动的流体力学计算与应用】

目前在Nature和Science杂志上发表的深度学习驱动的流体力学方面的论文主要集中以下几个方面:1、物理模型与深度学习的融合:研究如何将传统的物理模型与深度学习算法相结合,以提高流体力学问题的预测准确性和计算效率。3、数据驱动的流体力学研究:通过收集和分析大量的流体力学实验和计算数据,使用深度学习模型来识别流动特征和预测流动行为。6、流体力学中的优化问题:利用深度学习进行流体力学中的优化问题研究,包括形状优化、流场控制优化等,以实现更优的流体动力学性能。

2025-06-16 13:46:23 338

原创 「从实验室到工程现场:机器学习赋能智能水泥基复合材料研发全流程解析」

能够拓展传统流体力学的研究边界,为解决实际工程问题提供新的思路和方法.2、丰富实战案例驱动:通过大量的案例教学,如Matlab编程实现有限差分、使用深度学习框架进行流体力学问题求解、Fluent软件的流体计算案例、湍流传热预测、二维机翼流场的模拟预测、二维机翼流场的模拟预测等,使学员能够将理论知识应用于实际问题的解决过程中,增强动手能力和工程实践能力。3、技术深度与广度:从复合材料均质化理论和有限元建模开始,到更高级的神经网络建模、深度学习和迁移学习,逐步深入,确保学员能够掌握不同复杂度的技术。

2025-06-13 16:23:13 936

原创 流体力学×深度学习:Fluent算法驱动下的流体仿真与工业应用实战

6、流体力学中的优化问题:利用深度学习进行流体力学中的优化问题研究,包括形状优化、流场控制优化等,以实现更优的流体动力学性能。1、物理模型与深度学习的融合:研究如何将传统的物理模型与深度学习算法相结合,以提高流体力学问题的预测准确性和计算效率。2、复杂流动模拟:利用深度学习技术对复杂流动现象进行模拟和分析,包括湍流、多相流、非牛顿流体等,以揭示流动的内在规律。3、数据驱动的流体力学研究:通过收集和分析大量的流体力学实验和计算数据,使用深度学习模型来识别流动特征和预测流动行为。

2025-06-13 16:20:23 405

原创 【一文读懂电磁隐身系统设计】

此外,随着新型材料和制造技术的不断涌现,如 3D 打印技术、纳米材料等,将为电磁隐身系统设计带来新的机遇,有望解决目前面临的一些挑战,推动电磁隐身技术迈向新的高度。比如,一些低介电常数的材料,可以减少物体对电磁波的散射。而电磁隐身的核心思想,就是通过各种手段,改变物体对电磁波的这些作用,让反射和散射的电磁波尽可能地减弱,或者让它们以一种不会被探测设备识别的方式传播。同时,对于一些对电磁环境敏感的电子设备,如医疗设备、精密仪器等,也可以采用电磁隐身技术,为它们提供一个相对安静的电磁环境,保证设备的正常运行。

2025-06-13 09:41:47 984

原创 机器学习赋能的多尺度材料模拟与催化设计前沿技术

材料科学、物理学、化学、金属学与金属工艺、无机化工、有机化工、环境科学与资源利用、燃料化工、力学、自动化技术等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。主持国家自科基金及省部级项目10余项,发表SCI 检索论文160余篇,包括PNAS、Angewan. Chem.、Adv. Mater.、Adv. Fun. Mater.、ACS Catal.等化学材料类著名期刊,论文总共他引5800余次,H因子44。在多尺度理论模拟计算、人工智能机器学习在催化领域中应用等方面积累了丰富的经验。

2025-06-12 17:28:33 402

原创 基于CST+FDTD超表面正逆向设计应用(入门论文复现)

耦合模理论(Coupled Mode Theory, CMT)在超表面设计中的应用非常广泛,它主要用于分析和设计超表面的电磁行为,尤其是在处理光波与超表面相互作用时的模式耦合现象。据调查,目前在Nature和Science杂志上发表的超表面逆向设计方面的论文主要集中以下几个方面:1.新型光学功能的实现:研究如何通过逆向设计实现具有新颖光学功能(如负折射、光学隐身、超分辨率成像等)的超表面。6.拓扑光学和新型光子晶体:探索基于超表面的拓扑光学结构,以及新型光子晶体的设计和应用。

2025-06-11 15:23:01 1309

原创 机器学习赋能的智能光子学器件系统研究与应用

5.1 微纳光子器件的基本原理与常见结构5.2 基于深度学习的光谱预测与逆向设计 案例分析:一维的和二维的全介质和金属SPR 材料的光谱预测案例操作:级联网络的超构表面单元的光谱预测与逆向设计5.3 基于机器学习的电磁近场预测和逆向设计 案例分析:大面积超构表面的近场预测与逆向设计 5.4 基于深度学习的超构单元生成 案例操作:基于生成-对抗网络的自由超构表面单元生成。深度学习在微纳光子学中的应用。

2025-06-11 14:53:41 350

原创 智能超表面逆向设计新潮流:COMSOL光电赋能光子学器件创新

实际设计需平衡计算精度与效率,建议从简单单元结构入手,逐步增加复杂度。最新研究显示,引入拓扑优化可使器件效率提升30%以上(参见Adv. Photonics 2023)),利用优化算法反向求解超表面单元结构参数。通过加载液晶材料,实现10°-350°连续相位调制。通过设定目标电磁响应(如相位分布。

2025-06-10 13:58:14 1362

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除