sklearn库机器学习python使用教程:学完这一篇即巅峰

本文详细介绍了sklearn库的安装、四大机器学习类型及其应用,重点讲解了分类学习的代码实现,包括k邻算法和支持向量机,并探讨了模型评估和数据预处理的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、sklearn库安装

pip install scikit-learn

二、认识(四大学习)

1、分类学习(classification),属于监督型

适用算法一:k邻算法

from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5) # n_neighbors=5 为考虑最邻近的5个点,默认为 5
<
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云霄IT

感谢感谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值