深度学习tips(5)keras序贯模型

Sequential模型是Keras中的基础模型,用于线性堆叠网络层。构建模型时,可以通过Sequential()函数添加Dense、Activation等层,并指定输入尺寸。编译模型时需要选择优化器、损失函数和评估指标,如accuracy。训练模型使用fit()函数,可设置epochs、batch_size等参数。最后,模型可用于预测任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sequential 序贯模型

https://blog.csdn.net/sinat_26917383/article/details/72857454?locationNum=1&fps=1

https://www.cnblogs.com/wj-1314/p/9579490.html

序贯模型是函数式模型的简略版,为最简单的线性、从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠。

1.构建模型

 
model = Sequential([
    Dense(32, input_shape=(784,)),
    Activation('relu'),    
    Dense(10),
    Activation('softmax'),
])

也可以用a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值