1 事件的独立性
1.1 事件独立
- P ( A ∣ B ) > P ( A ) P(A|B) > P(A) P(A∣B)>P(A),表明B对A有促进作用
- P ( A ∣ B ) < P ( A ) P(A|B) < P(A) P(A∣B)<P(A),表明B对A有抑制作用
- P ( A ∣ B ) = P ( A ) P(A|B) = P(A) P(A∣B)=P(A),表明A,B是独立的
- 如果A,B相互独立,则有 P ( A B ) = P ( A ) ∗ P ( B ) > 0 P(AB) = P(A)*P(B) > 0 P(AB)=P(A)∗P(B)>0,那么A,B事件不是互斥的
- A,B事件相互独立,A,B事件可以同时发生
常见的事件独立的描述:
- 互不干扰
- 互不影响
- 独立工作
- 有放回
2.2 多个事件独立
2. 贝努里概型
- 贝努里试验只有两种结果