【概率论-03】:事件的独立性和贝努里概型

1 事件的独立性

1.1 事件独立

在这里插入图片描述

  • P ( A ∣ B ) > P ( A ) P(A|B) > P(A) P(AB)>P(A),表明B对A有促进作用
  • P ( A ∣ B ) < P ( A ) P(A|B) < P(A) P(AB)<P(A),表明B对A有抑制作用
  • P ( A ∣ B ) = P ( A ) P(A|B) = P(A) P(AB)=P(A),表明A,B是独立的

在这里插入图片描述
在这里插入图片描述

  • 如果A,B相互独立,则有 P ( A B ) = P ( A ) ∗ P ( B ) > 0 P(AB) = P(A)*P(B) > 0 P(AB)=P(A)P(B)>0,那么A,B事件不是互斥的
  • A,B事件相互独立,A,B事件可以同时发生

在这里插入图片描述

在这里插入图片描述
常见的事件独立的描述:

  • 互不干扰
  • 互不影响
  • 独立工作
  • 有放回

2.2 多个事件独立

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 贝努里概型

在这里插入图片描述

  • 贝努里试验只有两种结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值