lumerical_FDTD_光源_TFSF

TFSF源在光电仿真中的应用

全场散射场(TFSF)源 - 模拟对象

TFSF 源常用于研究平面波照射下小颗粒的散射情况。

其典型应用包括:均匀介质中的颗粒(该介质可能具有损耗或各向异性)。例如米氏散射;多层基底中的非周期性结构,该基底可能具有损耗或各向异性;

当与周期或布洛赫边界条件结合使用时,多层基底中的周期性结构。TFSF 源将计算区域分为两个不同的区域:总场区域 - 包括入射场波与散射场的总和;散射场区域 - 仅包含散射场

TFSF 源是一种高级源,必须谨慎设置并正确分析结果。有关更多信息,请参阅 TFSF 提示和最佳实践。两个区域在顶部的图中均可见。需要注意的是,物理场是总场,将场分离为入射场和散射场需要仔细解读。

对于均匀介质中的颗粒,入射场为平面波。对于基底上的粒子或多层堆叠中的粒子,入射场是指在没有粒子(或缺陷)的情况下多层结构中会存在的场

注意:在 2020 R.1.4 版本中,对极化箭头做了如下更改,以避免与极化方向产生歧义。使用单头箭头表示电场的初始极化方向。为磁场的极化方向添加绿色箭头。

这些更改仅影响源对象在图形用户界面中的外观。模拟结果不会受到任何影响。

“通用”选项卡

注入轴:设置辐射传播的轴。

方向:此字段指定辐射传播的方向。正向对应于沿正方向传播,而反向对应于沿负方向传播。

振幅:源的振幅,如“单位和归一化”部分所述。

相位:点源的相位,以度为单位测量。仅用于设置多个辐射源之间的相对相位延迟。

角度θ:在 3D 模拟中,这是相对于源注入轴传播的角度,以度为单位。在 2D 模拟中,这是绕全局 Z 轴旋转的角度,以度为单位,在右手坐标系中,即 XY 平面中的传播角度。

角度φ:在 3D 模拟中,这是绕源注入轴旋转的角度,以度为单位,在右手坐标系中。在 2D 模拟中,此值未使用。

偏振角:偏振角定义了注入电场的方向,其测量是相对于由传播方向和注入平面法线所形成的平面而言的。

零度偏振角定义为 P 偏振辐射,与传播方向无关,而 90 度偏振角定义为 S 偏振辐射。θ 与波长关系图:此图展示了模拟中每个源波长的实际注入角θ。

几何选项卡

几何选项卡包含用于更改源的大小和位置的选项

频率/波长选项卡 频率/波长选项卡如下所示。 可通过单个源属性或全局源属性访问此选项卡。

请注意,窗口右侧的图表会随着参数的更新而更新,因此您可以轻松观察源设置的波长(上图)、频率(中图)和时域(下图)内容。

在选项卡的左上角,可以选择“设置频率/波长”或“设置时域”。在大多数模拟中,建议选择“设置频率/波长”选项。如果您选择直接修改时域设置,请注意以下几点:

脉冲持续时间:选择一个能够准确覆盖您感兴趣的频率或波长范围的脉冲持续时间。然而,非常短的脉冲包含许多频率成分,因此会迅速分散。因此,短脉冲需要每波长更多的点来进行精确模拟。

脉冲偏移:此参数定义了模拟开始与输入脉冲中心之间的时间间隔。为确保输入脉冲不被截断,脉冲偏移应至少为脉冲持续时间的 2 倍。这将确保源中心频率周围的频率分布接近对称,并且在模拟开始时初始场接近零。

源类型:通常,您可以选择“标准”和“宽带”源类型。标准源由固定光载波上的高斯脉冲组成,而宽带源由脉冲包络中光载波变化的高斯脉冲组成。宽带源可用于需要宽带频率数据的模拟,例如从 200 到 1000 THz。这种频率范围无法使用标准声源类型进行精确模拟。

设置频率/波长

如果选择了“设置频率/波长”选项,此部分可让您设置频率或波长,并选择设置源的中心和跨度或最小和最大频率。对于单频模拟,只需将最小和最大波长设置为相同值即可。

设置时域

时域部分的选项有:

源类型:此设置用于指定源是标准源还是宽带源。标准源由固定频率的光载波和高斯包络组成。宽带源包含更宽的频谱,由具有高斯包络的啁啾光载波组成。当用户使用脚本函数 setsourcesignal 时,此字段将设置为“用户输入”。

频率:光载波的中心频率。

脉冲长度:脉冲的半高全宽(FWHM)功率时间持续时间。

偏移:源达到峰值幅度的时间,相对于模拟开始时间测量。偏移为 N 秒表示源在模拟开始后 N 秒达到峰值幅度。

带宽:时域脉冲的半高全宽(FWHM)频率宽度。更多信息,请访问 更改源带宽

高级功能:消除不连续性:确保用户定义的源时间信号起始和结束处函数具有连续导数(从零开始/结束的平滑过渡)。

默认启用。优化短脉冲:使用尽可能短的源脉冲。此选项在 FDTD 求解器中默认启用。只有在必须最小化源范围之外注入的功率时(例如,与宽带陡角注入相关的收敛问题)才应禁用此选项。此选项在 varFDTD 求解器中默认禁用,因为它提高了算法的数值稳定性。消除直流:通过强制信号对称来消除直流分量

源时间信号的手动计算 如上所述,“标准”源类型使用具有高斯包络的固定载波。以下脚本代码展示了如何计算源所使用的源时间信号。

# calculate standard pulse time signal  

frequency  = 300e12;  

pulselength = 50e-15;  

offset   = 150e-15;   

t      = linspace(0,600e-15, 10000);  

w_center  = frequency*2*pi;   

delta_t = pulselength/(2*sqrt(log(2)));  

pulse = sin( -w_center*(t-offset)) * exp( -(t-offset)^2/2/delta_t^2 );

plot(t*1e12,pulse,"t (fs)","source pulse time signal");

注意:此代码生成的脉冲与“标准”源脉冲设置所生成的实际时间信号之间存在一些细微差异。如果您需要对源时间信号进行非常精确的控制或了解其详情,应创建自己的自定义时间信号。“宽带”选项是通过一个更复杂的函数生成的。具体的函数未提供。若要创建自己的任意源时间信号,请参阅自定义时间信号页面。

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值