ollama对超长文本自动摘要(巨坑,看这一篇就足够)

为什么ollama对超长文本会进行自动摘要呢?

Ollama作为一个大模型的部署工具,为了提高它的运行效率,把一些配置参数固定死了。因此,不能完整的使用到大模型的真正的功能,例如:有32k上下文的大模型,通过Ollama部署运行后,若输入的文本超过2048K,模型就会返回文本摘要。其实不是大模型本身会对超长文本进行自动摘要,是因为Ollama内置了默认的2048K的上下文窗口,限制了大模型对于长文本的能力。

如何释放大模型长文本能力

  1. 查看大模型的模型信息(这里以llama3.3:70b为例)
ollama show llama3.3:70b

在这里插入图片描述
可以看到llama3.3:70b的上下文长度为128K

  1. 查看大模型的Modelfile文件信息

在ollama中每一个大模型都有对应的Modelfile文件,如果是直接拉ollama上的模型的话,Modelfile是看不到的,因此想要覆盖Modelfile上的配置信息的话,就得自己新建一个Modelfile文件,并且复制原来的Modelfile文件的内容,再原来的基础上增加num_ctx这个参数来增大上下文窗口

ollama show llama3.
TDengine是一种高性能、高可靠的时序数据库,由中国企业开发而成。然而,有些用户认为TDengine存在许多问题,因此将其称为""。以下是一些可能导致用户这样形容TDengine的问题: 首先,TDengine在与其他数据库集成时可能存在兼容性问题。由于其独特的架构和设计理念,一些已有的应用程序或工具可能无法直接适配TDengine。这可能导致用户需要进行大量的修改或重写现有代码,对于一些复杂的应用场景来说,这可能是一项耗时且繁琐的工作。 其次,TDengine的文档和教程相对较少。对于新用户来说,他们可能很难找到足够的资源来学习和理解TDengine的使用方法和最佳实践。这可能给用户带来一些困扰,特别是在遇到问题时很难找到解决办法。 此外,TDengine在某些方面的性能可能不如用户期望。虽然它被称为高性能数据库,但是与其他同类产品相比,TDengine可能在某些场景下的性能表现不如人意。这可能导致一些用户对TDengine的性能感到失望,并在使用过程中遇到一些瓶颈。 最后,TDengine可能也存在一些稳定性问题。尽管它被标榜为高可靠性数据库,但在实际使用中,一些用户可能遇到了一些无法解决的故障或崩溃问题。这可能对用户的业务和数据产生一定的影响,并损害用户对TDengine的信任度。 总之,尽管TDengine在性能和可靠性方面具备一定的优势,但也不能否认它目前还存在一些问题。用户在选择使用TDengine时需要充分了解其特点和局限性,并根据自身业务需求评估是否适合使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ven%

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值