文章目录
-
- 问题核心:标准线程池的局限性
- 解决方案一:双队列优先级系统
-
- 实现原理
- 代码实现
- 解决方案二:优先级队列 + 自定义执行器
-
- 实现原理
- 代码实现
- 解决方案三:asyncio + 线程池(Python 3.7+)
- 应用场景分析
-
- 何时需要优先级队列?
- 性能对比(10万任务测试)
- 最佳实践与注意事项
- 大蟒蛇的优先级秘籍
- 总结:选择适合的方案
在并发编程中,优先级调度就像急诊室的绿色通道——当普通患者排队时,危重病人需要立即处理!本文将深入探讨Python线程池中实现任务优先级调度的多种方法。
问题核心:标准线程池的局限性
Python的ThreadPoolExecutor
默认使用**先进先出(FIFO)**队列:
from concurrent.futures import ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=2) as executor:
# 所有任务按提交顺序执行
executor.submit(task1) # 任务1
executor.submit(task2) # 任务2
executor.submit(urgent_task) # 紧急任务 - 却要排队!
当线程池满时,紧急任务只能等待,这可能导致关键操作被延迟。那么如何让特定任务"插队"执行呢?