如何使用LangGraph构建可视化聊天智能体(企业级开发必备技能)

掌握LangGraph构建智能体的核心技能,实现企业级聊天应用的可视化开发与部署

LangGraph简介

LangGraph是一个基于图的编程模型,用于构建复杂、有状态的AI应用。它扩展了LangChain框架,提供了以下核心优势:

  • 图结构工作流:将智能体行为建模为状态图,清晰定义决策流程
  • 状态管理:内置状态管理机制,支持多轮对话和复杂交互
  • 可扩展性:轻松集成工具、记忆系统和外部服务
  • 可视化调试:提供可视化界面实时监控智能体决策过程
  • 企业级支持:支持分布式部署和水平扩展

对于企业级AI应用开发,LangGraph提供了构建复杂智能体系统的标准化框架,大幅提升开发效率和系统可靠性。

构建可视化聊天智能体完整步骤

1. 创建项目目录

mkdir langgraph-chatbot
cd langgraph-chatbot

2. 配置环境依赖

创建requirements.txt文件:

# requirements.txt
langgraph
langchain-core
langchain-openai
python-dotenv
pydantic
# 以下为可选,用于数据处理和Jupyter Notebook中的可视化
matplotlib
seaborn
pandas
IPython

安装依赖:

pip install -r requirements.txt

3. 配置环境变量

创建.env文件:

# 使用本地VLLM服务或替换为OpenAI API
VLLM_API_BASE = "http://localhost:8000/v1"
MODEL_NAME = "vllm-qwen3-32b"
# 如使用OpenAI服务:
# OPENAI_API_KEY = "your-api-key"
# MODEL_NAME = "gpt-4-turbo"

4. 构建智能体图

创建graph.py文件:

import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from langgraph.prebuilt import create_react_agent
from langchain.tools import tool
from pydantic import BaseModel, Field

# 加载环境变量
load_dotenv(override=True)

# 自定义天气查询工具
class WeatherQuery(BaseModel):
    city: str = Field(..., description
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ven%

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值