掌握LangGraph构建智能体的核心技能,实现企业级聊天应用的可视化开发与部署
LangGraph简介
LangGraph是一个基于图的编程模型,用于构建复杂、有状态的AI应用。它扩展了LangChain框架,提供了以下核心优势:
- 图结构工作流:将智能体行为建模为状态图,清晰定义决策流程
- 状态管理:内置状态管理机制,支持多轮对话和复杂交互
- 可扩展性:轻松集成工具、记忆系统和外部服务
- 可视化调试:提供可视化界面实时监控智能体决策过程
- 企业级支持:支持分布式部署和水平扩展
对于企业级AI应用开发,LangGraph提供了构建复杂智能体系统的标准化框架,大幅提升开发效率和系统可靠性。
构建可视化聊天智能体完整步骤
1. 创建项目目录
mkdir langgraph-chatbot
cd langgraph-chatbot
2. 配置环境依赖
创建requirements.txt
文件:
# requirements.txt
langgraph
langchain-core
langchain-openai
python-dotenv
pydantic
# 以下为可选,用于数据处理和Jupyter Notebook中的可视化
matplotlib
seaborn
pandas
IPython
安装依赖:
pip install -r requirements.txt
3. 配置环境变量
创建.env
文件:
# 使用本地VLLM服务或替换为OpenAI API
VLLM_API_BASE = "http://localhost:8000/v1"
MODEL_NAME = "vllm-qwen3-32b"
# 如使用OpenAI服务:
# OPENAI_API_KEY = "your-api-key"
# MODEL_NAME = "gpt-4-turbo"
4. 构建智能体图
创建graph.py
文件:
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from langgraph.prebuilt import create_react_agent
from langchain.tools import tool
from pydantic import BaseModel, Field
# 加载环境变量
load_dotenv(override=True)
# 自定义天气查询工具
class WeatherQuery(BaseModel):
city: str = Field(..., description