差异中心性-集成分析DiCE

摘要

挖掘驱动疾病与癌症发生的关键基因,对于深入理解疾病机制及开发靶向疗法至关重要。传统差异表达分析通常依赖主观设定的阈值,容易遗漏那些表达变化细微但关键的基因。部分方法虽整合了蛋白质 - 蛋白质相互作用(PPIs),却需依赖已有的疾病先验知识。

为解决这些问题,开发了新型分析方法 DiCE(差异中心性 - 集成分析,Differential Centrality-Ensemble analysis),可将差异表达分析与网络中心性分析相结合,且不依赖任何疾病先验注释信息。DiCE 的核心流程包括:识别候选基因,通过信息增益过滤器对其进行筛选优化,进而构建条件特异性加权蛋白质 - 蛋白质相互作用网络。借助中心性度量,DiCE 会综合基因的表达变化及网络影响力对基因进行排序。

在前列腺癌数据集上的验证结果显示:尽管筛选过程未使用无病生存期(DFS)相关信息,但 DiCE 识别出的基因不仅在关键通路中高度富集,还包含大量癌症适应性基因,且这些基因与无病生存期(DFS)呈显著相关性。

DiCE 为识别疾病相关基因提供了全面、无偏倚的方法,有望为生物标志物发现和疗法开发提供助力。

图片

材料与方法

图片

图1 DiCE 流程

结果

图片

图2 DiCE 在前列腺癌(PCa)肿瘤组织与正常组织中的应用

(A)本方法各阶段保留的基因数量。
(B)介数中心性、

(C)特征向量中心性:分别展示正常组织(x 轴)与前列腺癌(PCa)肿瘤组织(y 轴)中各基因的对应中心性值。
(D)DiCE 识别的基因在正常组织与肿瘤组织中的表达水平(这些基因在以往研究中被鉴定为枢纽基因)。
(E)DiCE 识别的上调基因显著富集的选定基因本体论(GO)术语及京都基因与基因组百科全书(KEGG)通路。
(F)参与细胞增殖的 DiCE 上调基因的蛋白质 - 蛋白质相互作用(PPI)网络。节点形状代表肿瘤样本与正常样本间介数中心性的变化(三角形表示增加,椭圆形表示减少);红色和蓝色分别表示特征向量中心性的正向变化和负向变化。
(G)DiCE 识别的下调基因显著富集的选定 GO/KEGG 通路。

图片

图3 DiCE 在前列腺癌(PCa)转移灶与原发灶中的应用

(A)DiCE 各阶段的基因数量。
(B)经 5 项研究荟萃分析鉴定的、与前列腺癌(PCa)转移相关的 47 个选定 DiCE 基因的表达水平(19 个枢纽基因用红色标注)。
(C)DiCE 上调基因、

(D)DiCE 下调基因中富集的 GO 术语及 KEGG 通路。
(E)PI3K-Akt 信号通路中 DiCE 下调基因的 PPI 网络(节点形状与颜色含义同图 2F)。

图片

图4 关键基因与患者生存结局的关联

(A)前列腺癌(PCa)肿瘤组织与正常组织对比中,DiCE 识别的、与无病生存期(DFS)显著相关的基因累积比例及其集成排序。
(B)排名靠前且与生存结局显著相关的 DiCE 基因的 Kaplan-Meier 生存曲线(KM 曲线)。
(C)DiCE 各阶段中与 DFS 相关的基因比例。
(D)前列腺癌(PCa)转移灶与原发灶对比中,DiCE 识别的、与 DFS 相关的基因累积比例及其排序。
(E)转移灶分析中选定的排名靠前 DiCE 基因的 KM 曲线。
(F)DiCE 各阶段中与 DFS 相关的基因比例(图 C、F 中比例差异的统计学显著性通过超几何分布评估)。
(G)2 种 DiCE 基因集的重叠情况:① 来自前列腺癌(PCa)肿瘤组织与正常组织对比,② 来自转移灶与原发灶对比。
(H)图 G 所示各分段中与 DFS 相关的 DiCE 基因比例。

图片

图5 传统差异表达分析(DEA)未识别的 DiCE 基因

(A)火山图:突出显示前列腺癌(PCa)肿瘤组织与正常组织间 log2 倍变化(log2FC)绝对值 < 1 的 3 个 DiCE 基因。
(B)DiCE 基因与差异表达基因(DEGs)的对比。
(C)图 A 中选定的 3 个基因的 KM 曲线。
(D)前列腺癌(PCa)转移灶与原发灶对比的火山图:展示 3 个表达变化细微的基因。
(E)转移灶背景下 DiCE 基因与 DEGs 的对比。
(F)图 D 中突出显示的 3 个 DiCE 基因的 KM 曲线。
(G)基于前列腺癌(PCa)肿瘤组织与正常组织对比分析,分别展示 DiCE 基因、癌症适应性 DiCE 基因及 DEGs 的度数、介数中心性变化量(Δ 介数中心性)、特征向量中心性变化量(Δ 特征向量中心性)分布;

(H)基于前列腺癌(PCa)转移灶与原发灶对比分析的上述指标分布。

(注:PCa = 前列腺癌;DFS = 无病生存期;KM=Kaplan-Meier;DEA = 差异表达分析;log2FC=log2 倍变化;DEGs = 差异表达基因;GO = 基因本体论;KEGG = 京都基因与基因组百科全书;PPI = 蛋白质 - 蛋白质相互作用)

参考

Nucleic Acids Res. 2025 Jul 8;53(13):gkaf609. doi: 10.1093/nar/gkaf609

注:AI辅助翻译,如有错误欢迎指出。请以复制粘贴,附上本号名片的方式转载此文。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值