CSP-J/S 考试介绍

CSP-J/S是由中国计算机学会(CCF)主办的非专业级别的软件能力认证考试。

CSP-J/S全称为CCF CSP-J/S,是CCF计算机软件能力认证(简称CCFCSP认证)中的一个部分,重点考察软件开发者实际编程能力。该项认证由CCF统一命题、统一评测,委托各地设立的考试机构进行认证考试。CSP-J/S分为两个级别:CSP-J(入门级,Junior)和CSP-S(提高级,Senior),均涉及算法和编程。CSP-J/S的认证对象不限年龄、学历、报考次数和国籍,只需在报名官网注册账户后即可报名参加认证。

一、考试概述

CSP-J/S 是 CSP(非专业级软件能力认证)的初赛考试,任何人都可以报名参加。CSP-J/S 分两个级别进行,分别为 CSP-J(入门级,Junior)和 CSP-S(提高级,Senior),两个级别难度不同,均涉及算法和编程。

二、考试阶段

CSP-J/S 分第一轮和第二轮两个阶段。

  • 第一轮:考察通用和实用的计算机科学知识,以笔试为主,部分省市以机试方式认证。
  • 第二轮:为程序设计,须在计算机上调试完成。

三、与其他竞赛的关系

CSP-J/S 认证成绩优异者,可参加 NOIP 省级选拔,省级选拔成绩优异者可参加 NOI,最后到IOI。

四、考试内容

  • 第一轮认证:主要测试选手有关计算机方面的基本知识,为资格测试。试题由选择题、程序阅读理解题、程序完善题三部分组成。
    • 选择题:共 15 题,每题 2 分,共计 30 分。提高组的前 10 道题为单选题,后 10 道题为不定项选择题(只有全部选对才得分,否则不得分);普及组的前 15 道题都是单选题。
    • 程序阅读理解题:共 3 题,共计 40 分。
    • 程序完善题:共 3 题,共计 30 分。
  • 第二轮认证:主要测试选手算法设计编程能力。
    • 普及组复赛:时间为 3 小时,共 4 道题,每题 100 分,共计 400 分。
    • 提高组复赛:包括一试和二试,分两天进行。每次测试时间为 3 小时,有 3 道题,每题 100 分。每一试题包括:题目、问题描述、输入输出要求、样例数据(部分题目有样例的说明)。测试时,测试程序为每道题提供了 10 - 20 组测试数据,考生程序每答对一组得 5 - 10 分,累计分即为该道题的得分。

2024年报名通知:CSP-J/S2024第一轮报名通知

资源来源于网络,如有侵权,私信立删。 CSP-J/S第一轮时间 CSP-J/S第一轮分为:CSP-J1和CSP-S1。和NOIP第一轮时间一样,CSP-J/S第一轮认证在10月份第三个星期六进行。 CSP-J/S第一轮考察重点 第一轮认证为笔试或机试,主要测试选手有关计算机方面的基本知识,第一轮为资格测试。从2020年开始,全部为机试。 CSP-J/S第一轮报名方式 参加CSP-S/J两组两轮认证均须在网上注册报名,注册网站为http://rg.noi.cn。参加认证者必须如实填写个人信息报名,包括但不限于姓名、身份证号、出生日期、性别、就学(学籍学校)/就职单位等,信息一旦注册,不得修改,如有错误,责任自负。 CSP-J/S第一轮认证考点 省认证点由CCF授权的CSP非专业级别省认证组织单位设置。 1、第一轮认证点:由省认证组织单位总负责人设置,每个认证点人数不应少于20人。 2、未经批准的认证点,其认证成绩不予承认。 认证费用 第一轮CSP-S/J组:50元/人(该费用不包括食宿及交通费)。 CSP-J/S第一轮认证试题组成 CSP-J/S第一轮在10月份第三个星期六进行,其中CSP-J1认证时间为周六9:30-11:30,CSP-S1认证时间为周六14:30-16:30。考试时长为2小时,内容为笔试或机试(从2020年开始全部为机试),满分100分。 试题由三部分组成: ① 选择题(共15题,每题2分,共计30分) CSP-S1的前10道题为单选题,后10道题为不定项选择题(只有全部选对才得分,否则不得分);CSP-J1的前15道题都是单选题。 ② 程序阅读理解题(共3题,共计40分) 题目给出一段程序(不一定有关于程序功能的说明),考生通过阅读理解该段程序进行答题,分为选择题和判断题。 ③ 程序完善题(共3题,共计30分) 题目给出一段关于程序功能的文字说明,然后给出一段程序代码,在代码中略去了若干个语句或语句的一部分并在这些位置给出空格,要求考生根据程序的功能说明和代码的上下文,选择对应答案 。三题皆为选择题。
在 Python 中,可以使用 statsmodels 模块中的 OLS 类来进行OLS回归模型的拟合和预测。下面是一个简单的示例代码: ```python import numpy as np import pandas as pd import statsmodels.api as sm # 生成随机数据 np.random.seed(123) X = np.random.rand(100) Y = 2*X + 0.5 + np.random.normal(0, 0.1, 100) # 将数据存放在DataFrame对象中 data = pd.DataFrame({'X': X, 'Y': Y}) # 添加截距项 data = sm.add_constant(data) # 拟合OLS回归模型 model = sm.OLS(data['Y'], data[['const', 'X']]) result = model.fit() # 输出回归结果 print(result.summary()) ``` 在上面的代码中,我们首先生成了一个简单的随机数据集,其中 X 是自变量,Y 是因变量。然后,我们将数据存放在了一个 pandas 的 DataFrame 对象中,并使用 sm.add_constant() 函数添加了截距项。接着,我们使用 sm.OLS() 函数拟合了OLS回归模型,并将结果保存在了 result 变量中。最后,我们使用 result.summary() 方法输出了回归结果的详细信息。 需要注意的是,在使用 statsmodels 进行OLS回归模型拟合时,需要显式地添加截距项,否则结果会有偏差。此外,我们还可以使用 result.predict() 方法来进行预测,即: ```python # 进行预测 new_data = pd.DataFrame({'X': [0.1, 0.2, 0.3]}) new_data = sm.add_constant(new_data) prediction = result.predict(new_data) # 输出预测结果 print(prediction) ``` 在上面的代码中,我们首先生成了一个新的数据集 new_data,然后使用 result.predict() 方法对其进行预测,并将结果保存在了 prediction 变量中。最后,我们使用 print() 函数输出了预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值