ubuntu下配置tensorflow 2.9.0+cuda 11.2 + cudnn 8.1.1

本文介绍了如何检查并安装CUDA版本,包括nvidia驱动的安装、cudnn的下载与验证,以及如何确保TensorFlow与CUDA的正确匹配。同时,还指导用户如何在miniconda环境中设置Python3.9版本并安装TensorFlow2.9.3以利用GPU资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensorflow与cuda版本对应关系

tensorflow官网说明(记得调至english查看完整表格)

cuda安装

安装nvidia驱动可以从软件和更新-附加驱动处完成安装
在这里插入图片描述

先查看自己的nvidia驱动支持的cuda版本

nvidia-smi

如果出现下图说明驱动安装成功
在这里插入图片描述
这个是cuda-11.2.0版本
自己选择适合自己的,下面是我的配置
在这里插入图片描述在这里插入图片描述
后面就是选择continue,输入accpet,然后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值