# 可视化空间注意力热力图(显示模型关注的图像区域)
def visualize_attention_map(model, test_loader, device, class_names, num_samples=3):
"""可视化模型的注意力热力图,展示模型关注的图像区域"""
model.eval() # 设置为评估模式
with torch.no_grad():
for i, (images, labels) in enumerate(test_loader):
if i >= num_samples: # 只可视化前几个样本
break
images, labels = images.to(device), labels.to(device)
# 创建一个钩子,捕获中间特征图
activation_maps = []
def hook(module, input, output):
activation_maps.append(output.cpu())
# 为最后一个卷积层注册钩子(获取特征图)
hook_handle = model.conv3.register_forward_hook(hook)
# 前向传播,触发钩子
outputs = model(images)
# 移除钩子
hook_handle.remove()
# 获取预测结果
_, predicted = torch.max(outputs, 1)
# 获取原始图像
img = images[0].cpu().permute(1, 2, 0).numpy()
# 反标准化处理
img = img * np.array([0.2023, 0.1994, 0.2010]).reshape(1, 1, 3) + np.array([0.4914, 0.4822, 0.4465]).reshape(1, 1, 3)
img = np.clip(img, 0, 1)
# 获取激活图(最后一个卷积层的输出)
feature_map = activation_maps[0][0].cpu() # 取第一个样本
# 计算通道注意力权重(使用SE模块的全局平均池化)
channel_weights = torch.mean(feature_map, dim=(1, 2)) # [C]
# 按权重对通道排序
sorted_indices = torch.argsort(channel_weights, descending=True)
# 创建子图
fig, axes = plt.subplots(1, 4, figsize=(16, 4))
# 显示原始图像
axes[0].imshow(img)
axes[0].set_title(f'原始图像\n真实: {class_names[labels[0]]}\n预测: {class_names[predicted[0]]}')
axes[0].axis('off')
# 显示前3个最活跃通道的热力图
for j in range(3):
channel_idx = sorted_indices[j]
# 获取对应通道的特征图
channel_map = feature_map[channel_idx].numpy()
# 归一化到[0,1]
channel_map = (channel_map - channel_map.min()) / (channel_map.max() - channel_map.min() + 1e-8)
# 调整热力图大小以匹配原始图像
from scipy.ndimage import zoom
heatmap = zoom(channel_map, (32/feature_map.shape[1], 32/feature_map.shape[2]))
# 显示热力图
axes[j+1].imshow(img)
axes[j+1].imshow(heatmap, alpha=0.5, cmap='jet')
axes[j+1].set_title(f'注意力热力图 - 通道 {channel_idx}')
axes[j+1].axis('off')
plt.tight_layout()
plt.show()
# 调用可视化函数
visualize_attention_map(model, test_loader, device, class_names, num_samples=3)
import torch
import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage import zoom
def visualize_feature_maps(model, test_loader, device, class_names, num_samples=3, conv_layer_name='conv3'):
model.eval()
with torch.no_grad():
for i, (images, labels) in enumerate(test_loader):
if i >= num_samples:
break
images, labels = images.to(device), labels.to(device)
activation_maps = []
def hook(module, input, output):
activation_maps.append(output.cpu())
# 支持任意层名
layer = dict([*model.named_modules()])[conv_layer_name]
handle = layer.register_forward_hook(hook)
outputs = model(images)
handle.remove()
_, predicted = torch.max(outputs, 1)
img = images[0].cpu().permute(1, 2, 0).numpy()
img = img * np.array([0.2023, 0.1994, 0.2010]).reshape(1, 1, 3) + np.array([0.4914, 0.4822, 0.4465]).reshape(1, 1, 3)
img = np.clip(img, 0, 1)
feature_map = activation_maps[0][0] # shape: [C,H,W]
channel_weights = torch.mean(feature_map, dim=(1, 2))
sorted_indices = torch.argsort(channel_weights, descending=True)
fig, axes = plt.subplots(1, 4, figsize=(16, 4))
axes[0].imshow(img)
axes[0].set_title(f'原始图像\n真实: {class_names[labels[0]]}\n预测: {class_names[predicted[0]]}')
axes[0].axis('off')
for j in range(3):
channel_idx = sorted_indices[j]
channel_map = feature_map[channel_idx].numpy()
channel_map = (channel_map - channel_map.min()) / (channel_map.max() - channel_map.min() + 1e-8)
heatmap = zoom(channel_map, (32/feature_map.shape[1], 32/feature_map.shape[2]))
axes[j+1].imshow(img)
axes[j+1].imshow(heatmap, alpha=0.5, cmap='jet')
axes[j+1].set_title(f'特征图热力图 - 通道 {channel_idx}')
axes[j+1].axis('off')
plt.tight_layout()
plt.show()
import torch
import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage import zoom
def visualize_gradcam(model, test_loader, device, class_names, num_samples=3, conv_layer_name='conv3'):
model.eval()
for i, (images, labels) in enumerate(test_loader):
if i >= num_samples:
break
images, labels = images.to(device), labels.to(device)
activations = []
gradients = []
def forward_hook(module, input, output):
activations.append(output)
def backward_hook(module, grad_in, grad_out):
gradients.append(grad_out[0])
# 支持任意层名
layer = dict([*model.named_modules()])[conv_layer_name]
fh = layer.register_forward_hook(forward_hook)
bh = layer.register_full_backward_hook(backward_hook)
outputs = model(images)
_, predicted = torch.max(outputs, 1)
score = outputs[0, predicted[0]]
model.zero_grad()
score.backward()
fh.remove()
bh.remove()
# Grad-CAM权重:全局平均池化梯度
grad = gradients[0][0].cpu().data.numpy() # [C,H,W]
act = activations[0][0].cpu().data.numpy() # [C,H,W]
weights = np.mean(grad, axis=(1, 2)) # [C]
# 线性加权求和(Grad-CAM图)
cam = np.zeros(act.shape[1:], dtype=np.float32)
for k, w in enumerate(weights):
cam += w * act[k, :, :]
cam = np.maximum(cam, 0) # 只保留正值(ReLU)
# 归一化到[0,1]
cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-8)
cam = zoom(cam, (32/cam.shape[0], 32/cam.shape[1]))
# 反标准化原图
img = images[0].cpu().permute(1, 2, 0).numpy()
img = img * np.array([0.2023, 0.1994, 0.2010]).reshape(1, 1, 3) + np.array([0.4914, 0.4822, 0.4465]).reshape(1, 1, 3)
img = np.clip(img, 0, 1)
plt.figure(figsize=(8,4))
plt.subplot(1,2,1)
plt.imshow(img)
plt.title(f'原图\n真实: {class_names[labels[0]]}\n预测: {class_names[predicted[0]]}')
plt.axis('off')
plt.subplot(1,2,2)
plt.imshow(img)
plt.imshow(cam, alpha=0.5, cmap='jet')
plt.title('Grad-CAM')
plt.axis('off')
plt.tight_layout()
plt.show()
打卡:@浙大疏锦行