NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题
文章目录
4.3 自动梯度计算
虽然我们能够通过模块化的方式比较好地对神经网络进行组装,但是每个模块的梯度计算过程仍然十分繁琐且容易出错。在深度学习框架中,已经封装了自动梯度计算的功能,我们只需要聚焦模型架构,不再需要耗费精力进行计算梯度。
飞桨提供了paddle.nn.Layer类,来方便快速的实现自己的层和模型。模型和层都可以基于paddle.nn.Layer扩充实现,模型只是一种特殊的层。
继承了paddle.nn.Layer类的算子中,可以在内部直接调用其它继承paddle.nn.Layer类的算子,飞桨框架会自动识别算子中内嵌的paddle.nn.Layer类算子,并自动计算它们的梯度,并在优化时更新它们的参数。
pytorch中的相应内容是什么?请简要介绍。
torch提供了torch.nn.Module类,来方便快速的实现自己的层和模型。模型和层都可以基于nn扩充实现,模型只是一种特殊的层。它继承了torch.nn.Module类的算子中,可以在内部直接调用其它继承的算子,torch框架会自动识别算子中内嵌的torch.nn.Module类算子,并自动计算它们的梯度,并在优化时更新它们的参数。
4.3.1 利用预定义算子重新实现前馈神经网络
使用torch的预定义算子来重新实现二分类任务。
主要使用到的预定义算子为torch.nn.Linear。
4.3.1.1 使用pytorch的预定义算子来重新实现二分类任务
import torch.nn as nn
import torch.nn.functional as F
import os
import torch
from abc import abstractmethod
import math
import numpy as np
# 新增make_moons函数
def make_moons(n_samples=1000, shuffle=True, noise=None):
n_samples_out = n_samples // 2
n_samples_in = n_samples - n_samples_out
outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))
inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))
X = torch.stack(
[torch.cat([outer_circ_x, inner_circ_x]),
torch.cat([outer_circ_y, inner_circ_y])],
axis=1
)
y = torch.cat(
[torch.zeros([n_samples_out]), torch.ones([n_samples_in])]
)
if shuffle:
idx = torch.randperm(X.shape[0])
X = X[idx]
y = y[idx]
if noise is not None:
X += np.random.normal(0.0, noise, X.shape)
return X, y
#accuracy函数的定义
def accuracy(preds, labels):
# 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
if preds.shape[1] == 1:
preds=(preds>=0.5).to(torch.float32)
else:
preds = torch.argmax(preds,dim=1).int()
return torch.mean((preds == labels).float())
#plot函数
def plot(runner, fig_name):
plt.figure(figsize=(10, 5))
epochs = [i for i in range(len(runner.train_scores))]
plt.subplot(1, 2, 1)
plt.plot(epochs, runner.train_loss, color='#e4007f', label="Train loss")
plt.plot(epochs, runner.dev_loss, color='#f19ec2', linestyle='--', label="Dev loss")
# 绘制坐标轴和图例
plt.ylabel("loss", fontsize='large')
plt.xlabel("epoch", fontsize='large')
plt.legend(loc='upper right', fontsize='x-large')
plt.subplot(1, 2, 2)
plt.plot(epochs, runner.train_scores, color='#e4007f', label="Train accuracy")
plt.plot(epochs, runner.dev_scores, color='#f19ec2', linestyle='--', label="Dev accuracy")
# 绘制坐标轴和图例
plt.ylabel("score", fontsize='large')
plt.xlabel("epoch", fontsize='large')
plt.legend(loc='lower right', fontsize='x-large')
plt.savefig(fig_name)
plt.show()
n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.15)
num_train = 640
num_dev = 160
num_test = 200
X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]
y_train = y_train.reshape([-1,1])
y_dev = y_dev.reshape([-1,1])
y_test = y_test.reshape([-1,1])
class Model_MLP_L2_V4(torch.nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Model_MLP_L2_V4, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
w=torch.normal(0