方差-协方差-PCA

本文详细介绍了在Python中使用numpy计算方差和协方差的区别,以及矩阵乘法的几何含义,特别关注PCA中的特征向量、基变换和第二正交向量生成过程。讨论了如何处理缩放、旋转和选择不同基对PCA的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pca讲解视频笔记

方差

在这里插入图片描述
在这里插入图片描述
注意numpy中求方差和series中求方差的区别 : numpy中求方差需要设置ddof=1,否则默认为0. 只有ddof=1,才能除以n-1 ; 而series中求方差时,默认ddof就是1,所以无需再设置ddof

协方差

在这里插入图片描述
注意矩阵的点积运算 行=列
在这里插入图片描述
当使用np.dot的时候,如果都是一维向量,就可以不用考虑转置了

协方差矩阵

在这里插入图片描述
上标样本,下标特征
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
均值为零,就可以考虑向量化,进行计算

矩阵乘法的几何意义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

缩放变换

在这里插入图片描述
在这里插入图片描述

同时旋转缩放

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意这里由于不是等比例的缩放,所以这里缩放之后的向量和原向量不是在一个方向上

特征向量

在这里插入图片描述

在这里插入图片描述
选择不同的基,就会有不同的坐标系

两个向量不相关才能作为基选项
在这里插入图片描述
在这里插入图片描述

基变换

在这里插入图片描述
在这里插入图片描述

PCA

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意第二正交向量是由是由向量之间叠加转换而成的,
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值