
机器学习
文章平均质量分 75
本专栏旨在为对机器学习感兴趣的读者提供一个系统、全面的学习平台。无论你是初学者,对机器学习的概念和原理一知半解;还是有一定基础,想要深入探索机器学习的高级应用,这里都能满足你的需求。我们将从机器学习的基础概念讲起,逐步深入到各种经典算法和现代前沿技术,通过理论与实践相结合的方式,帮助你建立起扎实的机
HXQ_晴天
欢迎来到“核电子学探索者”,一名热衷于核电子学的研究生。在这个博客中,我将带你一起探索粒子与核物理实验中的电子学奥秘,分享我在学习和研究过程中的心得体会。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Windows 下配置 GPU 用于深度学习(PyTorch)的完整流程
本文介绍了在Windows系统上配置PyTorch GPU环境的具体步骤。首先需要安装NVIDIA显卡驱动和CUDA Toolkit 12.1(建议添加到环境变量),然后验证CUDA安装是否成功。PyTorch GPU版本推荐通过官方源安装,安装完成后需检查GPU是否可用。常见问题包括CUDA未正确安装、版本不兼容或远程桌面导致的问题。最后说明只要GPU可用,训练脚本会自动使用GPU加速。整个过程强调版本兼容性和环境变量配置的重要性。原创 2025-07-24 15:00:54 · 753 阅读 · 0 评论 -
IMA(DICOM)格式和JPG格式进行深度学习优缺点
使用JPG转换医学影像(DICOM)存在显著缺陷:JPG的有损压缩会丢失关键灰度信息和元数据,影响医学分析的准确性。专业应用推荐保留DICOM或使用PNG、NIfTI等无损格式,通过pydicom等工具直接处理为numpy数组。仅在教学演示等非精密场景可考虑JPG,但需注意16位转8位的动态范围损失。转换时应先进行标准化处理(0-255归一化),PNG比JPG更适合保存医学影像细节。深度学习项目优先选择能保留完整医学信息的原始格式或无损替代方案。原创 2025-06-26 17:37:01 · 262 阅读 · 0 评论 -
卷积神经网络输入通道和输出通道的确定
输入通道由输入数据决定,输出通道由模型设计者选择。输出特征图的尺寸可以通过公式计算,帮助设计合适的网络结构。原创 2025-03-25 10:50:47 · 355 阅读 · 0 评论 -
深度学习中关于超参数的解释
例如,在一个回归任务中,如果 L2 正则化系数设置为 0.1,那么模型在训练过程中会适当考虑权重平方和的惩罚项,但如果设置为 1.0,正则化的惩罚会更强,可能会使模型变得过于简单。它首先定义一组超参数的取值范围,例如学习率可以是 [0.001,0.01,0.1],层数可以是 [2,3,4],每层神经元数量可以是 [50,100,200]。例如,在优化一个深度学习模型的超参数时,贝叶斯优化可以根据已经尝试过的超参数组合及其对应的模型性能,预测出哪些新的超参数组合可能具有更好的性能,然后优先评估这些组合。原创 2025-03-03 19:32:28 · 837 阅读 · 0 评论 -
常见深度学习算法图解笔记
与传统的机器学习方法不同,深度学习模型能够自动从原始数据中提取特征,减少了手动特征工程的需求。深度学习模型通常包含多个隐藏层,这些层可以学习数据的高层抽象和复杂特征。原创 2025-02-28 13:50:14 · 422 阅读 · 0 评论 -
神经网络中感受野的概念和作用
例如,假设第二层的卷积核大小为 3x3,那么该层每个神经元的感受野会包括前一层两个卷积核覆盖的区域叠加的结果,即对原始输入的感受野可能扩展到更大的范围,具体扩展大小取决于卷积核大小、步幅等参数的设定。例如,一个神经网络从输入层开始依次经过两层卷积层,每层感受野分别为 3x3 和 3x3,那么在第二层的感受野实际对原始输入的感受野可能达到更广范围(例如,假设无池化层或其他因素,可能为 5x5 或更大范围,具体大小需根据卷积参数计算)。:较大的卷积核会在局部区域捕获更多的信息,从而使得相应层级的感受野更大。原创 2025-02-27 21:15:51 · 738 阅读 · 0 评论 -
深度学习中卷积层(Conv)、BN层(Batch Normalization)和 ReLU层(Rectified Linear Unit)的详细介绍
卷积层是深度学习中卷积神经网络(CNN)的核心组成部分。它通过对输入数据(如图像)进行卷积操作来提取特征。卷积操作是用一个卷积核(也称为滤波器)在输入数据上滑动,计算卷积核与输入数据局部区域的点积。例如,对于一个图像输入,卷积核可以看作是一个小型的窗口,它在图像上按照一定的步长(stride)移动,每次移动到一个位置就和该位置对应的像素值进行乘积求和操作,得到一个输出值,这些输出值构成了卷积后的特征图。原创 2025-02-26 20:16:19 · 1826 阅读 · 0 评论 -
常见的深度学习算法
卷积神经网络是一种主要用于处理网格化结构数据(如图像)的神经网络模型。它的核心结构是卷积层,通过卷积层对输入数据进行卷积操作,提取数据的局部特征。原创 2025-02-26 20:21:29 · 1508 阅读 · 0 评论