第四期书生大模型实战营L2G4000

了解LMDeploy部署多模态大模型的核心代码,并运行提供的gradio代码,在UI界面体验与InternVL2的对话。

运行结果

在这里插入图片描述
在这里插入图片描述

总结

可以看到模型虽然能够根据图片回答问题,但是回答存在很多错误

了解XTuner,并利用给定数据集微调InternVL2-2B后,再次启动UI界面,体验模型美食鉴赏能力的变化。

环境配置

首先配置XTuner环境,并配置微调参数,微调数据集使用FoodieQA数据集,这里我们直接使用share目录下处理好的数据集

开始微调:xtuner train internvl_v2_internlm2_2b_lora_finetune_food --deepspeed deepspeed_zero2

微调完毕:

在这里插入图片描述
微调后,把模型checkpoint的格式转化为便于测试的格式:python xtuner/configs/internvl/v1_5/convert_to_official.py xtuner/configs/internvl/v2/internvl_v2_internlm2_2b_lora_finetune_food.py ./work_dirs/internvl_v2_internlm2_2b_lora_finetune_food/iter_640.pth ./work_dirs/internvl_v2_internlm2_2b_lora_finetune_food/lr35_ep10/

在这里插入图片描述

./work_dirs/internvl_v2_internlm2_2b_lora_finetune_food/lr35_ep10/为转换后的模型checkpoint保存的路径。

修改MODEL_PATH为刚刚转换后保存的模型路径,再次启动应用:

cd /root/InternVL2-Tutorial
conda activate lmdeploy
python demo.py

运行结果

在这里插入图片描述
在这里插入图片描述

总结

可以看到微调后的模型能够正确回答出我们提出的问题

将训练好的模型上传到 Hugging Face 或 ModelScope 上,模型名称包含 InternVL 关键词(优秀学员必做)

模型Hugging Face地址

在这里插入图片描述

### 关于书生大模型第四期基础通关岛第三关 针对书生大模型第四期基础通关岛第三关的任务,此阶段主要聚焦于通过不同参数量训练模型并结合多种微调技术来优化特定任务的表现。具体而言,在对比 xcomposer2-4khd、internVL1.5 和 llava-llama3-8b 这些具有不同参数规模的预训练模型时,采用 LORA(低秩自适应)、QLORA 及 FULL 训练方法可以有效增强模型处理少量样本学习(few-shot learning)以及专门领域内图纸识别的能力[^1]。 为了成功完成这一挑战,建议采取如下策略: #### 数据准备 确保拥有高质量的数据集用于训练和验证,特别是那些能够代表目标应用场景中的特征数据,比如工业设计图或其他形式的技术绘图。 #### 模型选择与调整 基于项目需求挑选合适的基线模型,并考虑其参数大小对性能的影响。较小的模型可能更适合资源受限环境下的部署;而较大的模型则通常能提供更好的泛化能力。 #### 微调技巧应用 利用LORA或QLORA等高效微调方式快速适配新任务,减少计算成本的同时保持较高的准确性。对于更复杂的要求,则可尝试FULL fine-tuning以获得最佳效果。 ```python from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments model_name = "path_to_pretrained_model" model = AutoModelForSequenceClassification.from_pretrained(model_name) training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, ) ``` 上述代码片段展示了如何设置一个简单的`Trainer`对象来进行模型微调操作。实际实现过程中还需要根据具体的任务类型调整配置项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值