自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1774)
  • 收藏
  • 关注

原创 创新驱动:AI应用架构师的智能金融系统设计新突破

回顾本文,我们拆解了智能金融系统设计中的四大核心突破数据架构:用联邦学习解决“数据隐私”与“多源整合”的矛盾;决策架构:用自适应决策替代静态规则,实现“动态优化”;交互架构:用主动预测替代被动响应,让系统“懂用户”;运维架构:用实时可观测替代静态监控,实现“自我修复”。这些突破的核心不是“用更先进的AI技术”,而是**“用AI解决传统架构解决不了的问题”**——比如数据隐私、决策灵活性、用户需求识别、运维效率。

2025-09-13 10:55:42

原创 惊人变革!AI应用架构师推动金融市场AI监控系统的升级之路

异常检测(Anomaly Detection):识别“非预期的交易行为”(如账户突然大额转入转出);趋势预测(Trend Prediction):预测市场波动的极端情况(如股票闪崩);因果分析(Causal Inference):解释“异常发生的原因”(如“某股票下跌是因为负面新闻还是内幕交易?”)。AI监控系统的目标是将这三类任务自动化、实时化、可解释化,辅助监控人员快速决策。AI监控系统的升级,不是简单的“用AI替换规则”,而是技术与业务的深度融合。

2025-09-13 09:28:42 293

原创 AI应用架构师总结:智能供应商评估系统的8个安全防护措施(附合规指南)

智能供应商评估系统(ISAS)是结合AI技术(机器学习、自然语言处理、知识图谱)与供应链管理(SCM)流程供应商资质审核(营业执照、资质证书的OCR识别与真实性验证);风险预测(通过历史数据预测供应商的违约、欺诈风险);绩效评估(基于交付周期、质量率等指标的动态评分);合规检查(自动匹配GDPR、环保法规等要求)。与传统规则引擎相比,ISAS的优势是处理非结构化数据(如供应商财报文本)、捕捉隐性风险(如关联方交易),但也因依赖数据与模型引入了新的安全风险。ISAS的安全问题可抽象为。

2025-09-13 02:59:55 329

原创 AI原生应用助力计算机视觉技术飞跃

计算机视觉(CV)是让机器“看懂世界”的核心技术,从手机人脸解锁到自动驾驶识别红绿灯,它已渗透到生活每个角落。但传统CV应用常面临“训练慢、用不起、不够准”的问题——比如工厂质检系统需要人工标注上万张缺陷图片,训练一个模型要等一周;自动驾驶的实时识别延迟可能导致事故。本文将聚焦“AI原生应用”这一关键破局点,解释它如何从底层重构CV技术,覆盖从模型训练到落地应用的全链路优化。用“智能小侦探升级记”的故事引出AI原生应用与CV的关系;拆解两者核心概念,用“工具箱”“眼睛”等比喻降低理解门槛;

2025-09-13 01:22:43 257

原创 Python实战:使用PyOD库实现高效大数据异常检测

PyOD的优势易用性:统一API,与Scikit-learn兼容,学习成本低;高效性:支持并行计算、批处理、近似算法,适合大数据场景;通用性:覆盖多种算法,适用于多种场景;可解释性:支持异常得分校准、邻域可视化,便于业务决策。PyOD的不足实时处理支持有限:部分模型(如AutoEncoder)不支持流式数据;高维数据性能下降:需结合降维技术;依赖外部库:如Dask、Spark,需额外学习。结论:对于大数据场景的无监督/半监督异常检测,PyOD是当前最优的Python工具包。

2025-09-12 23:50:39 347

原创 HBase在大数据领域的实时分析应用案例

本文章的目的在于全面介绍HBase在大数据领域实时分析的应用情况。通过详细的案例分析,帮助读者深入理解HBase的特性和优势,掌握如何利用HBase进行大数据的实时分析。范围涵盖了HBase的核心概念、算法原理、实际项目开发以及不同行业的应用场景等方面。本文首先介绍HBase的核心概念和相关联系,接着阐述其核心算法原理和具体操作步骤,然后通过数学模型和公式进行详细讲解。之后通过项目实战展示代码实现和分析,列举实际应用场景,推荐相关工具和资源。最后总结未来发展趋势与挑战,提供常见问题解答和扩展阅读参考资料。

2025-09-12 22:28:11 246

原创 探秘AI应用架构师的智能营销AI决策系统的营销资源整合

企业的营销目标是什么?(比如提高ROI、增加用户复购率、扩大市场份额);当前的营销资源有哪些?(比如用户、内容、渠道、预算);资源整合的痛点是什么?(比如数据分散、协同效率低、策略静态);希望通过AI解决什么问题?(比如精准匹配、动态优化、整体协同)。AI驱动的营销资源整合,不是要取代运营人员,而是要赋能他们。AI能做的是“处理海量数据、精准匹配资源、动态优化策略”,而运营人员能做的是“洞察用户情感、设计品牌故事、制定战略方向”。两者的结合,才能让营销资源发挥最大的价值。

2025-09-12 20:59:57 509

原创 跨语言AI应用的风险防控:AI应用架构师的体系设计

在全球化浪潮中,跨语言AI已成为跨国企业、国际服务的核心基础设施——比如亚马逊的多语言客服、Google翻译的实时对话功能、字节跳动的全球化内容推荐。2022年,某电商AI将日文“注文をキャンセル”(取消订单)错译为“confirm order”(确认订单),导致用户投诉;2023年,某医疗AI将中文“过敏性休克”翻译成西班牙语时漏掉“grave”(严重),险些造成医疗事故;2024年,某教育AI因训练数据中“男性程序员”样本过多,对女性用户的技术问题响应速度慢2秒。

2025-09-12 19:24:26 589

原创 震撼来袭!提示工程架构师多语言提示系统设计大招

英语用户问:“Where is my order?”(我的订单在哪里?),用英文提示“Please answer the user’s question about order status in English, be friendly.”,AI回复得很准确。西班牙语用户问:“¿Dónde está mi pedido?”(我的订单在哪里?

2025-09-11 14:10:15 368

原创 《一文洞察本质!AI应用架构师在AI驱动价值创造中的实用策略剖析》

当企业高呼“AI赋能”时,多数失败的根源并非模型不够精准,而是架构设计未能连接“技术能力”与“业务价值”。AI应用架构师的核心使命,不是搭建一个“能运行的系统”,而是构建一个“能持续创造价值的闭环”。本文将从本质逻辑出发,拆解AI应用架构的“价值创造链条”,结合3大核心策略(需求驱动的架构设计、工程化的模型落地、自动化的运维闭环)和5个真实案例(电商推荐、物流预测、医疗影像、金融风控、工业质检),教你如何从“业务痛点”到“技术实现”,再到“价值放大”,一步步让AI从“实验室”走进“生产线”。

2025-09-11 12:38:22 732 1

原创 全球化企业数据中心规划:AI应用架构师的实战策略

在全球化浪潮下,企业面临"业务跨地域、数据跨边界、AI跨场景"的三重挑战:如何让分布在纽约的用户享受毫秒级的AI推荐?如何让伦敦的工程师高效训练用北京用户数据的模型?如何在遵守欧盟GDPR的同时,让东京的数据中心为东南亚用户提供服务?作为AI应用架构师,你需要的不是"标准化数据中心蓝图",而是一套适配全球化场景的AI原生规划框架。如何平衡"全球统一管理"与"本地个性化服务"?如何让AI模型在"分布式数据"上高效训练?如何用边缘计算解决"跨地域延迟"问题?如何在合规约束下实现"数据自由流动"?

2025-09-11 11:16:24 686

原创 提示工程架构师的技术路线图:如何快速掌握核心技能?

当你还在为“如何让LLM写出更通顺的文案”发愁时,提示工程架构师已经在设计“支撑10万级用户的智能客服提示系统”了——他们的工作不是“写一个好提示”,而是“设计一套能自动生成、优化、适配不同场景的提示系统”。用“餐厅总厨”的比喻讲清提示工程架构师的核心价值;用“软件架构”的逻辑拆解提示系统的核心模块;给出分阶段技能树(基础→核心→进阶),附真实项目案例和避坑指南;教你用“系统思维”解决LLM应用的底层问题(比如上下文过载、回答不一致)。提示工程的终极能力,是“用提示连接人与AI系统”。

2025-09-11 09:39:07 245

原创 提示工程:智能艺术创作的创意催化剂

提示工程可以简单理解为通过精心设计和优化输入给人工智能模型的文本提示,以引导模型生成符合预期的输出。在智能艺术创作场景中,这些提示可以是对画面内容的描述、音乐风格的界定等。例如,当使用图像生成模型时,输入“一幅以秋天森林为主题,充满暖色调,有阳光透过树叶缝隙洒下的油画”这样的提示,模型便会尝试依据此描述生成相应的图像。

2025-09-11 03:00:11 315

原创 从零搭建到性能优化:AI提示系统架构全流程实战,提示工程架构师的实践指南

在"""提示渲染请求模型"""user_id: int = Field(..., description="用户ID")user_query: str = Field(..., description="用户问题")template_name: str = Field(..., description="模板名称(如customer_service)")在中添加。

2025-09-11 01:28:12 271

原创 上下文工程+知识图谱:提示工程架构师构建智能医疗诊断知识库的实战教程

在智能医疗领域,「准确诊断」是核心目标——但纯大模型(如GPT-4)的「幻觉问题」和「领域知识滞后」始终是致命缺陷:而**「上下文工程+知识图谱」的组合**,正是解决这两个问题的关键:本文将以「社区常见疾病智能诊断知识库」为例,从概念原理→实战开发→优化迭代,手把手教你构建一个「可靠、可扩展」的智能医疗诊断系统。在进入实战前,我们需要先明确两个核心概念在医疗场景中的具体含义:上下文工程(Context Engineering)是**「为大模型构建精准输入」的技术**,其核心目标是:将「用户问题」「领域知识

2025-09-11 00:06:14 304

原创 提示工程架构师实战:Agentic AI社会影响的预测模型

当AI从“工具型助手”进化为“自主型智能体”(Agentic AI),它对社会的影响不再是“线性的工具升级”,而是“蝴蝶扇动翅膀引发的风暴”——可能优化医疗资源分配,也可能加剧就业歧视;可能降低教育成本,也可能扩大数字鸿沟。如何提前预测这些“蝴蝶效应”?本文结合提示工程架构师的实战经验提示工程是连接人类社会需求与Agentic AI能力的“翻译器”

2025-09-10 22:29:02 411

原创 手把手教:经济学研究中AI多智能体系统的架构设计与代码实现

传统经济学假设“所有消费者都遵循相同的效用函数”,但真实世界中,有人偏好储蓄,有人偏好消费;有人风险厌恶,有人风险偏好。MAS的智能体设计必须体现这种异质性。交互是MAS的灵魂,它决定了智能体如何影响彼此。竞争(如生产者争夺市场份额);合作(如企业联盟定价);谈判(如劳资双方协商工资);政策执行(如政府向企业征税)。消费者生产者政府环境类需要管理智能体的调度、市场规则(价格调整、供需匹配)、资源状态(总需求、总供给)。

2025-09-10 20:51:51 278

原创 大数据领域数据网格与传统数据架构的对比分析

传统数据架构的典型问题与局限性数据网格的核心设计理念与优势两者在架构模式、治理方式、技术实现上的本质差异如何根据企业业务需求选择合适的架构本文将按照“概念解释→对比分析→实战案例→趋势展望”的逻辑展开,通过生活化类比降低理解门槛,结合代码示例和流程图强化技术细节。传统数据架构:以集中式存储(如数据仓库、数据湖)为核心,由IT部门统一管理数据采集、清洗、存储、分析的架构模式。数据网格(Data Mesh)

2025-09-10 19:14:46 241

原创 探索大数据领域数据挖掘的推荐系统构建

随着互联网数据量呈指数级增长(据IDC预测,2025年全球数据总量将达175 ZB),用户面临严重的信息过载问题。推荐系统通过分析用户行为数据和物品特征,为用户提供个性化内容推荐,已成为提升用户体验和商业价值的核心技术。本文聚焦大数据环境下推荐系统的构建,涵盖数据挖掘核心技术、经典与前沿算法实现、工程化实践及应用场景分析。内容适用于希望深入理解推荐系统原理并具备实战能力的技术人员。核心概念:解析推荐系统技术架构与数据挖掘核心任务算法原理:详解协同过滤、矩阵分解、深度学习等核心算法数学建模。

2025-09-10 17:52:50 734

原创 提示工程架构师踩坑实录:交互性差?8个趣味技巧帮你逆转

本文将以“踩坑实录”的形式,还原提示工程架构师在提升LLM交互性时遇到的真实困境,并用8个趣味技巧逐一拆解解决方案。踩坑场景:真实项目中遇到的交互性问题(附对话截图/日志);底层原理:为什么原提示会失效?LLM的“思考盲区”在哪?技巧详解:具体怎么改提示?关键代码/模板是什么?效果对比:优化前后的交互差异(数据化呈现,如“误解率下降72%”);趣味彩蛋:用生活化类比帮你记住核心逻辑(比如“把LLM当小学生教”)。上下文“收纳盒”:分层存储关键信息,告别“金鱼脑”;反向提问魔法。

2025-09-10 16:20:47 761

原创 数据中台元数据管理:构建企业数据资产目录

在数字化转型浪潮中,企业数据呈现爆炸式增长,数据已成为企业核心战略资产。然而,数据孤岛、数据质量低下、数据理解困难等问题严重制约了数据价值的发挥。数据中台作为企业数据能力的共享服务平台,其核心任务之一就是通过元数据管理构建统一的数据资产目录,实现数据的可发现、可理解、可信任和可重用。元数据的基本概念和分类元数据管理的技术架构和核心组件元数据采集、存储和建模的实现方法数据血缘分析和影响分析的算法原理元数据管理的实际应用场景和最佳实践第2章介绍元数据管理的核心概念和技术架构。

2025-09-10 14:43:35 893

原创 AI伦理挑战压身,AI应用架构师的应对策略大改进

AI伦理不是“选择题”,而是“必答题”。作为AI应用架构师,我们有责任设计出“安全、公平、透明”的AI系统,让AI真正为人类带来福祉。欢迎在评论区分享你的AI伦理实践经验,我们一起探讨!

2025-09-10 13:06:25 1030

原创 提示工程在气候变化预测AI中的神奇应用

气候变化不是遥远的“未来式”——2023年欧洲夏季高温突破45℃,2024年中国华南暴雨引发洪灾,北极海冰面积创历史新低……这些极端事件的背后,是地球系统“代谢紊乱”的信号。传统气候变化预测依赖数值模型(如CMIP6),但面临计算成本高、数据融合难、因果解释弱的痛点。而AI(尤其是大语言模型)的出现,为解决这些问题提供了新工具——但AI不是“魔法盒”,它需要**精准的“指令”**才能理解地球的复杂逻辑。为什么说提示工程是连接AI与地球科学的“翻译器”?

2025-09-10 11:29:19 637

原创 AI应用架构师分享AI驱动深度研究平台的性能调优技巧

AI深度研究平台的核心目标是**“让科研人员把时间花在‘思考问题’上,而不是‘等模型跑结果’”**。用V100 GPU训练Transformer,3天只跑了5个epoch;推理一张医疗影像要10秒,医生等得不耐烦;GPU利用率长期低于30%,算力资源白白浪费。本文聚焦**“从0到1解决平台性能瓶颈”,覆盖数据加载→模型训练→推理部署**全流程,教你用“工程师思维”定位问题、解决问题。故事引入:用实验室真实案例讲清楚“性能瓶颈有多痛”;核心概念:用“厨房炒菜”类比算力、数据、模型的关系;

2025-09-10 10:07:22 944

原创 3年提示工程架构师:我用这6个在线学习案例验证了提示词设计的黄金法则(纯干货)

在开始案例前,我们得先统一“语言体系”——否则你可能会问:“提示工程不就是写提问吗?有什么好讲的?

2025-09-10 03:38:48 999

原创 边缘AI在环保中的应用:架构设计与低延迟部署技巧

当雾霾突然笼罩城市时,传统环保监测系统需要10秒将数据传到云端,再用5秒处理报警——等指令到达现场,污染已经扩散;而边缘AI能在1秒内完成"数据采集-推理-决策"全流程,像"环保哨兵"一样即时响应。本文将揭开边缘AI在环保中的应用密码:从架构设计(感知层-边缘层-云层的协同逻辑)到低延迟部署技巧(模型压缩、边缘节点优化),用生动比喻、代码示例和真实案例,让你掌握边缘AI如何解决环保监测的"实时性痛点"。无论是环保技术人员还是AI开发者,都能从本文获得可落地的实践指南。

2025-09-10 02:16:47 328

原创 机器学习在大数据预测分析中的5大应用场景

随着信息技术的飞速发展,大数据时代已经来临。海量的数据蕴含着巨大的价值,但要从这些数据中提取有意义的信息并非易事。机器学习作为一种强大的技术手段,能够对大数据进行有效的分析和预测。本文的目的在于详细探讨机器学习在大数据预测分析中的五大典型应用场景,包括金融风险预测、医疗疾病预测、零售销售预测、交通流量预测和能源消耗预测。通过对这些应用场景的研究,帮助读者了解机器学习在不同领域的具体应用方式和价值,为实际应用提供参考和指导。本文首先介绍背景知识,包括目的、预期读者和文档结构概述。

2025-09-10 00:39:38 667

原创 从用户需求到系统设计:提示工程架构师的智能家居上下文实战

What(需求是什么):用户的模糊表达(如“我想放松”)如何拆解为可执行的目标?When(何时执行):需求的触发条件(如“下班前30分钟”“晚上10点后”)如何感知?How(如何执行):多设备如何协同(如“关闭窗户→开空调→播放音乐”)?对应的术语精确性上下文(Context):用户状态(位置、活动、偏好)、环境状态(温度、光线、时间)、设备状态(开关、电量、模式)的集合,记为 ( C = {U, E, D} );用户需求(User Requirement, R)

2025-09-09 23:02:24 805

原创 多任务学习的特征共享策略:AI应用架构师的6种设计模式

多任务学习(Multi-Task Learning,MTL)是一种机器学习范式,它的核心思想是在一个模型中同时学习多个相关的任务。与传统的单任务学习不同,多任务学习可以让模型在学习过程中共享不同任务之间的信息,从而提高模型的泛化能力和学习效率。举个简单的例子,在自然语言处理中,我们可能同时有文本分类和情感分析两个任务。传统的做法是分别训练两个独立的模型来完成这两个任务,但在多任务学习中,我们可以构建一个模型,让它同时学习文本分类和情感分析。

2025-09-09 21:33:46 344

原创 Power BI与大数据:构建智能数据分析体系

随着信息技术的飞速发展,大数据已经成为企业和组织的重要资产。如何从海量的数据中提取有价值的信息,为决策提供支持,成为了当前面临的重要挑战。Power BI作为一款强大的商业智能工具,能够与大数据相结合,帮助用户构建智能数据分析体系。本文的目的在于详细介绍如何利用Power BI与大数据构建智能数据分析体系,涵盖了从数据获取、处理、建模到可视化的整个流程,同时探讨了在实际应用中的场景和未来发展趋势。核心概念与联系:介绍Power BI和大数据的核心概念,以及它们之间的联系。

2025-09-09 19:58:17 850

原创 提示工程架构师不可不知的自动化部署工具要点

目标环境:是本地部署还是云部署?是测试环境还是生产环境?资源需求:提示服务需要多少CPU、内存?(比如本地部署的Llama 2 7B模型需要至少8GB内存);迭代频率:多久更新一次提示?(比如每天更新一次,还是每周更新一次?监控需求:需要监控哪些指标?(比如响应时间、错误率、用户反馈)。提示工程是「用自然语言解决复杂问题」的艺术,而自动化部署是「将艺术转化为产品」的技术。作为提示工程架构师,你需要既要懂提示设计,也要懂部署工具——因为,只有能落地的提示,才有价值。

2025-09-09 18:26:12 1011

原创 能源预测AI模型的版本管理:架构师的最佳实践

想象一下——上周部署的风电出力预测模型准确率达到95%,本周突然暴跌至80%。开发团队声称只改动了数据预处理参数,运维团队坚持部署流程完全一致。管理层急需知道:是天气突变?是模型错误?还是数据处理出了纰漏?谁负责?如何快速定位?能否安全回滚到上周版本?如果没有清晰的版本管理,团队将陷入猜疑链和无休止的排查泥潭。能源预测模型版本管理远非简单的代码版本控制(如Git)。它是一个需要协调以下关键组件的交响乐团模型结构、训练脚本、特征工程管道。巨量的历史负荷、气象、市场、设备状态数据。

2025-09-09 16:54:15 796

原创 大数据领域数据建模的雨林大数据生物多样性监测

全球雨林仅占陆地面积的6%,却承载着50%以上的地球生物多样性。然而,非法采伐、气候变化、土地退化等因素导致雨林生态系统以每分钟消失3个足球场的速度衰退。传统人工监测方式存在覆盖范围小、数据滞后、成本高等问题,亟需通过大数据建模技术构建实时、精准、规模化的生物多样性监测体系。如何对时空异质性强的生态数据进行标准化处理?怎样构建兼顾空间相关性和时间动态性的预测模型?如何实现从数据建模到保护决策的高效转化?核心概念:定义生物多样性监测数据模型的核心要素与技术架构。

2025-09-09 15:32:18 908

原创 AI应用架构师遭遇AI伦理难题,这些应对策略超有效

在AI技术飞速发展的今天,AI应用架构师扮演着关键角色——他们像建筑师一样,设计和搭建智能系统的“骨架”。但随着AI深入生活、金融、医疗等领域,伦理问题层出不穷:系统可能歧视少数群体、泄露用户隐私或导致不公平决策。本文旨在帮助AI架构师(和开发者)理解这些伦理挑战,并提供可落地的高效策略。背景介绍:定义问题和上下文。核心概念与联系:用故事和生活比喻解释AI伦理基本元素及关系。核心算法原理 & 具体操作步骤:用Python代码展示公平性算法。数学模型和公式:解析公平性指标的数学本质。项目实战。

2025-09-09 14:00:15 965

原创 提示工程架构师的内部分享:下一代提示工程师的绩效评估法

当提示工程从“小作坊式写Prompt”升级为“系统性设计AI交互框架”,传统的“提示数量KPI”“单条效果评分”早已过时——我们需要的是一套能评估“工程师如何用提示创造系统价值”的方法。先拆解传统评估的3大痛点(数量陷阱、能力模糊、协作缺失);再提出下一代评估的核心逻辑——以“系统价值”为锚点,拆解为4大能力模块(系统思维、AI协作、迭代闭环、价值交付);最后用真实案例(电商客服AI、代码助手)演示如何落地这套框架,以及解决“如何量化抽象能力”“如何归因间接价值”等具体问题。

2025-09-09 12:23:11 684

原创 提示工程测试规范体系详解:架构师实战经验分享

在大模型主导的AI时代,提示(Prompt)是人类与机器之间的“沟通语言”——它像一份菜谱,决定了大模型这个“厨师”能做出什么样的“菜”(输出结果)。然而,很多团队在开发AI产品时,往往重“提示设计”轻“提示测试”,导致输出不稳定、有偏见、安全隐患等问题频发。本文结合我作为AI架构师的10+个实战项目经验,从“为什么需要测试规范”“测试体系的核心架构”“实战落地步骤”三个维度,详细拆解提示工程测试规范体系的搭建过程。我会用“给AI做体检”的生活化比喻,将复杂的测试逻辑转化为易懂的流程;

2025-09-09 11:01:12 585

原创 提示工程灰度发布策略:架构师必须掌握的流量控制技术(附代码示例)

在大语言模型(LLM)驱动的应用中,提示工程是连接用户需求与模型能力的核心桥梁——一个优质提示能让GPT-4输出精准的解决方案,而一个糟糕的提示可能导致模型生成无关、甚至有害的内容。但提示的迭代充满风险:新提示可能引入输出偏差、提升Token成本,或触发合规问题。如何在验证新提示效果的同时,避免全量上线的风险?灰度发布(Canary Release)是架构师的核心武器。它通过增量式流量分配,将新提示的影响范围限制在小部分用户中,通过实时监控验证效果后再逐步推广。本文将从理论框架、架构设计、代码实现。

2025-09-09 09:24:07 851

原创 生成式AI对企业算法市场建设的影响:AI应用架构师的思考

在讨论变革前,我们需要明确一个核心概念——企业算法市场不是“公开的算法商城”,而是企业内部的“算法资产生态”算法资产:通用算法(如分类、聚类、回归)、业务算法(如推荐、风控、销量预测)、自定义算法(如企业专属的用户分层逻辑);配套资源:算法文档(需求说明、实现逻辑)、测试用例(边界条件、性能指标)、数据依赖(特征库、标签体系);交互界面:算法调用API、低代码配置平台、业务人员可操作的可视化工具;治理机制:算法审批流程、效果监控体系、版本管理规则。简单来说,企业算法市场的目标是。

2025-09-09 02:55:16 869

原创 提示设计迭代的常见挑战:架构师分享解决方案与应对策略

我是林深,某一线AI公司架构师,主导过5款AI产品的提示设计(包括电商客服、本地生活推荐、科研辅助写作),拥有10年自然语言处理(NLP)经验。我喜欢把复杂的技术问题拆成“人话”,帮更多人学会用AI解决真实问题。如果您有提示设计的问题,欢迎在评论区留言——我会一一回复~

2025-09-09 01:18:05 791

原创 提示工程架构师作品集:展示你塑造AI应用未来能力的5个关键点

通用Prompt(比如“总结这篇文章”)能解决80%的基础问题,但无法应对20%的复杂领域场景——比如医疗报告摘要、金融风险评估、法律文书审查。需要AI理解领域知识的“边界”和“优先级”。场景化提示设计的本质,是将领域知识编码为Prompt的“约束条件”和“权重规则”,让AI从“泛泛回答”转向“精准解决问题”。某三甲医院需要将500字的门诊病历转化为100字内的结构化摘要,帮助医生快速定位关键信息。

2025-09-08 23:46:00 825

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除