自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(31)
  • 收藏
  • 关注

原创 猴痘病识别改进|DenseNet+SE-Net

在上述在DenseNet系列算法中插入SE-Net通道注意力机制并完成猴痘病识别的内容里,主要涉及的技术与模块总结如下:1. **DenseNet网络**:作为基础网络架构,DenseNet(Densely Connected Convolutional Networks)的核心特点是密集连接,即每一层的输入都由前面所有层的输出拼接而成。这样的连接方式促进了特征的复用,减轻了梯度消失问题,并且在一定程度上减少了参数量。

2025-03-28 14:05:03 1088

原创 DesNet和ResNet 结合

我们可以结合两者的优点,在模型的某些部分使用 ResNet 的残差连接,以帮助网络更好地学习深度特征和避免梯度问题;在网络的深层部分,采用 ResNet 的残差连接,确保深层网络能够稳定地学习到复杂的特征表示。ResNet 的核心在于通过残差连接解决了深度神经网络中梯度消失和网络退化的问题,使得网络可以更容易地学习恒等映射,能够训练更深的网络。而 DenseNet 的特点是层与层之间密集连接,每一层都接收前面所有层的特征图作为输入,这种连接方式增加了特征的复用性,减少了参数数量,并且缓解了梯度消失问题。

2025-03-21 14:41:06 431

原创 DenseNet

在计算机视觉领域,卷积神经网络(CNN)已经成为最主流的方法,比如GoogLenet,VGG-16,Incepetion等模型。CNN史上的一个里程碑事件是ResNet模型的出现,ResNet可以训练出更深的CNN模型,从而实现更高的准确度。ResNet模型的核心是通过建立前面层与后面层之间的“短路连接”(shortcuts,skip connection),进而训练出更深的CNN网络。

2025-03-07 09:01:57 842

原创 ResNet50V2

📌 本周任务: ● 1.请根据本文 TensorFlow 代码,编写出相应的 Pytorch 代码(建议使用上周的数据测试一下模型是否构建正确)● 2.了解ResNetV2与ResNetV的区别● 3.改进思路是否可以迁移到其他地方呢(自由探索)

2025-02-28 19:57:28 1078

原创 CNN|ResNet-50

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中。● 指标(metrics):用于监控训练和测试步骤。● prefetch() :预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。● 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。● 损失函数(loss):用于衡量模型在训练期间的准确率。● cache() :将数据集缓存到内存当中,加速运行。● shuffle() : 打乱数据。

2025-02-13 13:18:29 495

原创 Pytorch|YOLO

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。📌如果将优化器换成 SGD 会发生什么呢?请自行探索接下来发生的诡异事件的原因。如果设备上支持GPU就使用GPU,否则使用CPU。训练营往期文章中有详细的介绍。

2025-01-16 16:19:44 1335

原创 PyTorch实战|马铃薯识别

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。📌如果将优化器换成 SGD 会发生什么呢?请自行探索接下来发生的诡异事件的原因。如果设备上支持GPU就使用GPU,否则使用CPU。预测结果是:Early_blight。训练营往期文章中有详细的介绍。

2025-01-08 17:38:52 938

原创 PyTorch实战|人脸识别

2卷积层的设计:VGG-16的卷积层全部采用3x3的卷积核和步长为1的卷积操作,同时在卷积层之后都接有ReLU激活函数。1深度:VGG-16由16个卷积层和3个全连接层组成,因此具有相对较深的网络结构。3池化层:在卷积层之后,VGG-16使用最大池化层来减少特征图的空间尺寸,帮助提取更加显著的特征并减少计算量。4全连接层:VGG-16在卷积层之后接有3个全连接层,最后一个全连接层输出与类别数相对应的向量,用于进行分类。VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16。

2025-01-03 14:57:51 1226

原创 PyTorch实战|运动鞋识别

数据收集确定数据来源:明确数据是来自数据库、文件系统、网络爬虫、传感器等。例如,在构建一个图像识别模型时,数据可能来源于互联网上的公开图像数据集,像 CIFAR - 10(由 10 个不同类别的 60000 张 32x32 彩色图像组成);或者是通过专门的图像采集设备获取。获取相关数据:按照预先确定的来源渠道,收集足够数量的数据。对于文本分类任务,可能需要从新闻网站、学术论文库等地方收集文本内容,并标注好类别,如财经新闻、科技新闻等。数据清理处理缺失值识别数据集中哪些属性存在缺失值。

2024-12-27 14:48:37 873

原创 Pytorch实战|猴痘病识别

前期准备:设置 GPU,若设备支持则使用 GPU,否则使用 CPU;导入 CIFAR10 数据集并划分训练集和测试集,使用数据加载器加载数据;对数据进行可视化,通过对张量进行轴变换将数据格式从 (C, H, W) 转换为 (H, W, C) 以便可视化和处理。构建网络:详细介绍了构建简单 CNN 网络的过程,包括特征提取网络和分类网络。对网络中使用的等函数进行了详解,给出了关键参数说明,并展示了网络的数据形状变化过程和网络结构。训练模型:设置超参数,包括损失函数和学习率等;

2024-12-20 11:58:31 936

原创 PyTorch|彩色图片识别

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用。对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。,否则的话,有输入数据,即使不训练,它也会改变权值。

2024-12-03 15:00:20 975

原创 PyTorch实战|彩色图片识别

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用。对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。,否则的话,有输入数据,即使不训练,它也会改变权值。

2024-11-29 21:07:05 1405

原创 Pytorch|mnist手写数字识别

这段代码的主要功能是将imgs中的前20张图像绘制到一个 2x10 的网格中,每张图像占用一个子图,并使用黑白色调显示图像。# 图片的类别数:设定了分类任务的类别数为 10,通常用于数字分类(如 MNIST 数据集,0-9 的数字分类)。:继承了nn.Module类,表示这是一个 PyTorch 的神经网络模型。:调用父类nn.Module的初始化方法,确保模型的基本结构被正确初始化。这个模型使用了两层卷积层来提取图像特征,并通过池化层减少空间维度。接着,使用全连接层进行分类,输出每个类别的得分。

2024-11-21 16:34:34 1230

原创 TensorFlow|猫狗识别

VGG16nb_classes表示输出类别数(例如,如果进行 1000 类分类任务,),是输入图像的形状(例如,表示图像为 224x224 像素,3 个颜色通道)。定义了网络的输入层。该代码是一个包含训练和验证过程的深度学习模型训练脚本。它使用和方法逐步处理每个批次,且在训练过程中动态调整学习率,使用tqdm显示训练和验证的进度条,并记录每个epoch的损失和准确率。

2024-11-11 10:40:04 1228

原创 TensorFlow|咖啡豆识别

🔎 探索(难度有点大)

2024-11-07 16:33:25 943

原创 TensorFlow|好莱坞明星识别

这段代码将从train_ds数据集中的一个批次中选取 20 张图像,并按 5 行 10 列的网格布局显示它们。每张图像的标题为其所属类别的名称,且不显示坐标轴。这段代码对train_ds和val_ds数据集进行了优化,通过缓存、打乱、预取等操作提升了数据加载的效率,避免了在训练和验证过程中由于数据加载造成的瓶颈。AUTOTUNE会根据系统资源动态调整缓冲区大小,进一步提高性能。

2024-11-05 16:08:51 993

原创 TensorFlow|运动鞋品牌识别

在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。

2024-10-31 17:19:59 744

原创 TensorFlow|猴痘病识别

这些步骤共同作用,目的是提高数据加载和预处理的效率,从而加快训练和验证过程。使用cache可以减少 I/O 操作,shuffle有助于提高模型的泛化能力,而prefetch则可以减少训练过程中 GPU 的空闲时间。这些技巧对于大型数据集尤其重要。这段代码实现了训练 Keras 模型,并在训练过程中根据验证集准确率动态保存最佳模型。这种方式对于避免过拟合和在后续使用时恢复最佳性能的模型非常有用。

2024-10-24 15:12:25 758

原创 TensorFlow|天气识别

本文将采用CNN实现多云、下雨、晴、日出四种天气状态的识别。较上篇文章,本文为了增加模型的泛化能力,新增了Dropout层并且将最大池化层调整成了平均池化层。2.导入数据3.查看数据数据集一共分为、、、四类,分别存放于文件夹中以各自名字命名的子文件夹中。输出:图片总数为:1125这段代码的功能是从指定目录中加载并打开一张图片。具体步骤如下:导入库:定义数据目录:获取图片列表:打开并显示图片:处理未找到图片的情况:这段代码的核心目的是从指定目录中加载一张 JPG 格式的图片并显

2024-10-21 18:00:09 797

原创 TensorFlow|彩色图片分类

👉 要求:这段代码用于可视化CIFAR-10数据集中的前20张图像。具体步骤如下:类名定义: 列表包含了CIFAR-10数据集中每个类别的名称(如飞机、汽车等)。创建图形: 设置图形的大小为20x10英寸。循环绘图:使用 循环遍历前20张图像:显示图形: 用于展示所有绘制的图像。这段代码将生成一个包含前20张CIFAR-10图像的图形,并在每个图像下方标注相应的类别。关于卷积层:可参考【加速器节选】部分池化层对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度;另一

2024-10-18 15:54:59 1053

原创 TensorFlow | 实现mnist手写数字识别

这段代码构建了一个典型的卷积神经网络,适合处理图像数据,通过卷积层和池化层提取特征,最终通过全连接层进行分类。使用ReLU激活函数可以加快训练速度,同时保持较好的泛化能力。通过调用,设置了模型训练时的基本参数。这些配置将直接影响模型的训练效果和收敛速度。选择合适的优化器、损失函数和评估指标是成功训练深度学习模型的重要步骤。确保这些配置适合具体任务的特点,能够提升模型的性能通过调用方法,开始了模型的训练过程。

2024-10-15 15:12:58 1715

原创 机器学习|随机森林

列出需要进行标签编码的类别特征。

2024-10-14 21:24:59 1600

原创 机器学习|集成学习

集成学习是通过构建并结合多个学习器来完成学习任务,如下图所示,其过程是:先产生一组“个体学习器”,再用某种策略将它们结合起来。个体学习器一般就是我们常见的机器学习算法,比如:决策树,神经网络等。这里集成一般有两种:同质和异质。同质是指个体学习器全是同一类型,这种同质集成中的个体学习器又称“基学习器”。异质是指个体学习器包含不同类型的算法,比如同时包含决策树和神经网络。一般我们常用的都是同质的,即个体学习器都是同一类型的。集成学习通过将多个基学习器结合,通常都会获得比单一学习器显著优越的泛化性能。

2024-10-14 16:10:04 397

原创 机器学习:支持向量机(SVM)详解与实战

支持向量机(Support Vector Machine,简称 SVM)是一种常用于分类和回归任务的监督学习算法。它的核心思想是通过在特征空间中找到一个能够最大化分类间隔的超平面,将不同类别的数据分离开来。SVM的目标是找到一个最优的决策边界(即超平面),使得分类间隔(即边界到各类别数据点的最小距离)最大化。SVM可以处理线性可分和线性不可分的数据集。

2024-10-14 16:07:50 3136

原创 机器学习:决策树模型|分类模型/回归模型

这一算法的开发灵感源自人类在解决问题时的思考方式,我们往往通过一系列简单而直观的问题逐步缩小解决方案的范围。决策树的构建过程也是类似的,它通过对数据的特征进行提问,选择最能区分不同类别的特征,逐渐生成树状结构,最终形成一个可用于预测的模型。决策树算法是一种在机器学习和数据挖掘领域广泛应用的强大工具,它模拟人类决策过程,通过对数据集进行逐步的分析和判定,最终生成一颗树状结构,我们希望通过鸢尾花数据,训练一个决策树模型,之后应用该模型,可以根据鸢尾花的四个特征去预测它的类别。这样可以更好地理解模型的决策过程。

2024-10-12 15:59:34 749

原创 机器学习|K-邻近算法模型

背景: 海伦一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的人选,但她没有从中找到喜欢的人。①不喜欢的人;②魅力一般的人;③极具魅力的人。①每年获得的飞行常客里程数②玩视频游戏所耗时间百分比③每周消费的冰淇淋公升数她希望根据现有的数据来判断一个陌生男人会被她归到哪一类。

2024-10-12 15:11:35 1016

原创 机器学习:逻辑回归LogisticRegression

逻辑回归(Logistic Regression)是一种广泛应用的机器学习算法,特别适用于分类问题。尽管名字中带有“回归”,但它主要用于解决二分类或多分类问题,而不是回归问题。比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。

2024-10-11 17:10:13 978

原创 机器学习:多元线性回归模型——学习记录

这段代码的整体作用是可视化数据集中不同特征(如花萼长度、花萼宽度、花瓣长度和花瓣宽度)之间的关系。通过使用不同的标记类型,能够直观地展示各组数据的分布情况,并通过图例来区分不同的数据集。这段代码的整体作用是创建一个线性回归模型实例,并使用训练集的数据拟合该模型。这段代码的整体作用是从数据集中提取特定的特征列(第 1 列和第 2 列)和目标变量(第 3 列),并将它们分别存储为 NumPy 数组。中每个样本的预测值。这段代码的整体作用是利用训练好的线性回归模型对测试集进行预测,并将预测结果存储在。

2024-10-11 15:35:33 625

原创 机器学习:简单线性回归模型——学习记录

回归的目的是为了预测,比如在通过鸢尾花花瓣长度预测花瓣宽度回归之所以能预测,是因为它通过大量的花瓣长度与宽度数据,“弄懂了”花瓣长度与宽度之间的线性关系,在这个基础之上就可以通过花瓣长度预测花瓣宽度了。线性就是关系可以用线性方程来表示,通过一个或多个变量来表示另外一个变量。通俗的说符合“越…,越…”这种说法的可能就是线性关系,比如“房子”越大,“租金”就越高“汉堡”买的越多,花的“钱”就越多杯子里的“水”越多,“重量”就越大。

2024-10-11 14:48:02 698

原创 机器学习:数据预处理——学习记录

整体上,这段代码的作用是准备一个 imputer 对象,该对象可以用于填补数据集中指定列(第 1 列和第 2 列)中的缺失值,采用均值填补的策略。这段代码的整体作用是对训练集和测试集的特征数据进行标准化处理。通过这种方式,可以提高模型训练的效果和收敛速度,确保不同特征在相同的尺度上进行处理,从而增强模型的性能。随机分割成训练集和测试集,以便于后续的模型训练和评估。通过这种方式,可以确保模型在未见过的数据上进行测试,从而评估其泛化能力。类,用于对特征数据进行标准化,使其均值为 0,标准差为 1。

2024-10-11 10:14:46 976

原创 SpringCloud知识点梳理

在自己的学习过程中整理的一些基本知识点,主要为了学习之用,希望大家多以指正与学习。

2022-12-13 14:50:12 132 3

TensorFlow-咖啡豆识别

咖啡豆数据集

2024-11-07

SpringCloud思维导图

SpringCloud自己整理的思维导图

2022-12-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除