
机器学习
文章平均质量分 89
机器学习代码实战
义小深
分享自己学习成果
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习|随机森林
列出需要进行标签编码的类别特征。原创 2024-10-14 21:24:59 · 1610 阅读 · 0 评论 -
机器学习|集成学习
集成学习是通过构建并结合多个学习器来完成学习任务,如下图所示,其过程是:先产生一组“个体学习器”,再用某种策略将它们结合起来。个体学习器一般就是我们常见的机器学习算法,比如:决策树,神经网络等。这里集成一般有两种:同质和异质。同质是指个体学习器全是同一类型,这种同质集成中的个体学习器又称“基学习器”。异质是指个体学习器包含不同类型的算法,比如同时包含决策树和神经网络。一般我们常用的都是同质的,即个体学习器都是同一类型的。集成学习通过将多个基学习器结合,通常都会获得比单一学习器显著优越的泛化性能。原创 2024-10-14 16:10:04 · 404 阅读 · 0 评论 -
机器学习:支持向量机(SVM)详解与实战
支持向量机(Support Vector Machine,简称 SVM)是一种常用于分类和回归任务的监督学习算法。它的核心思想是通过在特征空间中找到一个能够最大化分类间隔的超平面,将不同类别的数据分离开来。SVM的目标是找到一个最优的决策边界(即超平面),使得分类间隔(即边界到各类别数据点的最小距离)最大化。SVM可以处理线性可分和线性不可分的数据集。原创 2024-10-14 16:07:50 · 3153 阅读 · 0 评论 -
机器学习:决策树模型|分类模型/回归模型
这一算法的开发灵感源自人类在解决问题时的思考方式,我们往往通过一系列简单而直观的问题逐步缩小解决方案的范围。决策树的构建过程也是类似的,它通过对数据的特征进行提问,选择最能区分不同类别的特征,逐渐生成树状结构,最终形成一个可用于预测的模型。决策树算法是一种在机器学习和数据挖掘领域广泛应用的强大工具,它模拟人类决策过程,通过对数据集进行逐步的分析和判定,最终生成一颗树状结构,我们希望通过鸢尾花数据,训练一个决策树模型,之后应用该模型,可以根据鸢尾花的四个特征去预测它的类别。这样可以更好地理解模型的决策过程。原创 2024-10-12 15:59:34 · 752 阅读 · 0 评论 -
机器学习|K-邻近算法模型
背景: 海伦一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的人选,但她没有从中找到喜欢的人。①不喜欢的人;②魅力一般的人;③极具魅力的人。①每年获得的飞行常客里程数②玩视频游戏所耗时间百分比③每周消费的冰淇淋公升数她希望根据现有的数据来判断一个陌生男人会被她归到哪一类。原创 2024-10-12 15:11:35 · 1017 阅读 · 0 评论 -
机器学习:逻辑回归LogisticRegression
逻辑回归(Logistic Regression)是一种广泛应用的机器学习算法,特别适用于分类问题。尽管名字中带有“回归”,但它主要用于解决二分类或多分类问题,而不是回归问题。比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。原创 2024-10-11 17:10:13 · 981 阅读 · 0 评论 -
机器学习:数据预处理——学习记录
整体上,这段代码的作用是准备一个 imputer 对象,该对象可以用于填补数据集中指定列(第 1 列和第 2 列)中的缺失值,采用均值填补的策略。这段代码的整体作用是对训练集和测试集的特征数据进行标准化处理。通过这种方式,可以提高模型训练的效果和收敛速度,确保不同特征在相同的尺度上进行处理,从而增强模型的性能。随机分割成训练集和测试集,以便于后续的模型训练和评估。通过这种方式,可以确保模型在未见过的数据上进行测试,从而评估其泛化能力。类,用于对特征数据进行标准化,使其均值为 0,标准差为 1。原创 2024-10-11 10:14:46 · 979 阅读 · 0 评论 -
机器学习:多元线性回归模型——学习记录
这段代码的整体作用是可视化数据集中不同特征(如花萼长度、花萼宽度、花瓣长度和花瓣宽度)之间的关系。通过使用不同的标记类型,能够直观地展示各组数据的分布情况,并通过图例来区分不同的数据集。这段代码的整体作用是创建一个线性回归模型实例,并使用训练集的数据拟合该模型。这段代码的整体作用是从数据集中提取特定的特征列(第 1 列和第 2 列)和目标变量(第 3 列),并将它们分别存储为 NumPy 数组。中每个样本的预测值。这段代码的整体作用是利用训练好的线性回归模型对测试集进行预测,并将预测结果存储在。原创 2024-10-11 15:35:33 · 627 阅读 · 0 评论 -
机器学习:简单线性回归模型——学习记录
回归的目的是为了预测,比如在通过鸢尾花花瓣长度预测花瓣宽度回归之所以能预测,是因为它通过大量的花瓣长度与宽度数据,“弄懂了”花瓣长度与宽度之间的线性关系,在这个基础之上就可以通过花瓣长度预测花瓣宽度了。线性就是关系可以用线性方程来表示,通过一个或多个变量来表示另外一个变量。通俗的说符合“越…,越…”这种说法的可能就是线性关系,比如“房子”越大,“租金”就越高“汉堡”买的越多,花的“钱”就越多杯子里的“水”越多,“重量”就越大。原创 2024-10-11 14:48:02 · 701 阅读 · 0 评论