原始部落byteland中的居民们为了争抢有限的资源,经常发生冲突。几乎每个居民都有它的仇敌。部落酋长为了组织一支保卫部落的队伍,希望从部落的居民中选出最多的居民入伍,并保证队伍中任何两个人都不是仇敌。
输入格式:
第一行两个正整数n和m,表示byteland部落中有n个居民,居民间有m个仇敌关系, 0<n<200, 0<m<6000。居民编号为1,2,…,n。接下来输入m行中,每行正整数u和v,表示居民u和居民v是仇敌。
输出格式:
输出部落卫队最佳组建方案中包含的居民人数。之后逐个输出卫队组成xi, 1<=i<=n, xi=0表示居民i不在卫队中,xi=1表示居民i在卫队中。
输入样例:
7 10
1 2
1 4
2 4
2 3
2 5
2 6
3 5
3 6
4 5
5 6
输出样例:
3
1 0 1 0 0 0 1
代码实现:注意的点请看注解~
#include <iostream>
using namespace std;
int R[201][201] = {0}; //关系矩阵
int x[201] = {0}, cx[201] = {0}; //x[i]=1表示居民在卫队中,反之不在
int n, m; //n是人数,m是仇敌关系数量
int max_num = 0, cmax = 0; //卫队中居民人数
bool Bound(int t1) //约束函数:当前的居民在卫队中中是否有仇敌关系
{
int j;
for (j=1; j<t1; j++)
{
if (cx[j]==1 && R[t1][j]==1)
{
return false;
}
}
return true;
}