matplotlib常用功能

这篇博客介绍了matplotlib库的常用调参方法,包括fig, ax的设置,显示中文和负号,调整xticks和xlim,使用不同风格以及查看可用风格。同时,讲解了可视化功能,如bar图、水平bar图及堆积图的绘制。" 132194528,2206993,Vue开发Chrome插件:拦截请求实战,"['前端开发', 'Vue', 'Chrome扩展']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01 | 调参

1.fig,ax

# 2,2代表2x2
fig,ax = plt.subplots(nrows=2, ncols=2,figsize = (12,5))
['df'].value_counts().plot(kind='pie',autopct='%1.2f%%',explode=(0.1,0),ax = ax[0,0],labels = ['男','女'])
ax[0,0].set_title('title_name')
ax[0,0].set_ylabel('')  # 删除左侧标签
plt.show()

在这里插入图片描述

2.显示中文 / 负号plt.rcParams[ ]

sns.set_style('whitegrid',{'font.sans-serif':['simhei','Arial']})
plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
plt.rcParams['axes.unicode_minus']=False # 显示负号

3. 修改plt.xticks() / plt.xlim()

import matplotlib.pyplot as plt
plt.xticks(range(0,20,2))
plt.yticks(range(20,40,4))
plt.show()

在这里插入图片描述

import matplotlib.pyplot as plt
plt.xticks(range(0,20,2))
plt.yticks(range(20,40,4))
plt.ylim(20,40) #plt.yticks定义数据区间,plt.ylim定义刻度
plt.show()

在这里插入图片描述

4.修改style plt.style.use()

5.查看style plt.style.available

设置matplotlib可以使用的风格

02 | 可视化

1.plt.bar( )

import matplotlib.pyplot as plt
import numpy as np

a = np.linspace(1,10,10)
b = np.linspace(1,10,10)

label = []
for i in ('ABCDEFGHIJ'):
    label.append(i)
plt.bar(a,b,tick_label = label)
plt.show()

在这里插入图片描述

2.plt.barh(a,b,tick_label = label)

import matplotlib.pyplot as plt
import numpy as np
a = np.linspace(1,10,5)
b = np.linspace(1,5,5)
label_bath = ['a','b','c','d','e']
# plt.barh()可以在y轴上画柱状图,tick_label对应柱状图的值
plt.barh(a,b,tick_label = label_bath)
plt.show()

3.堆积图

import matplotlib.pyplot as plt
 
plt.style.use('seaborn-colorblind')    
# 构造数据,统计四个季度app端男女用户数量(万)
labels = ['S1','S2','S3','S4']
men_means = [20, 35, 30, 35]
women_means = [25, 32, 34, 20]

# 调matplotlib参数
width = 0.2     # the width of the bars: can also be len(x) sequence
fig, ax = plt.subplots(figsize=(5,3),dpi=200)

men_data = ax.bar(labels, men_means, width,label='Men')
women_data = ax.bar(labels, women_means, width, bottom=men_means,label='Women')
ax.set_title('Scores by group and gender')
ax.legend()

def auto_text(rects):
    for rect in rects:
        ax.text(rect.get_x(), rect.get_height(), rect.get_height(), ha='left', va='bottom')

auto_text(men_data)
auto_text(women_data)

plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值