论文阅读|《基于改进模因算法的考虑工人安排的分布式灵活作业车间调度问题》

论文阅读|《基于改进模因算法的考虑工人安排的分布式灵活作业车间调度问题》
在这里插入图片描述
申明:本人对论文解读只是记录自己的学习过程,无其他用途。
1.摘要
经典的分布式柔性作业车间调度问题(DFJSP)主要考虑工厂分配、机器布置、作业排序和运输。迄今为止,相关文献尚未对实际制造系统中广泛存在的带有工人安排的DFJSP进行研究。在本文中,我们研究了带有工人安排的 DFJSP(DFJSPW),其中不仅考虑工厂、机器和操作,还同时考虑工人。针对该问题制定了混合整数线性规划模型。相应地,针对所提出的DFJSPW,提出了一种基于NSGA-II结构的改进模因算法(IMA),其目标是同时最小化完工时间机器的最大工作量工人的工作量。在IMA中,设计了简化的两级编码四种启发式解码方法来对个体进行编码和解码。开发了一种精心设计的自适应邻域搜索算子来增强IMA的局部搜索能力加速其收敛。构建了 58 个基准来评估我们提出的 IMA 的性能。大量实验表明,在大多数例子中,IMA的性能优于四种著名的多目标算法,证明了IMA在求解DFJSPW方面的优越性。
1 引言
现有的DFJSP研究主要集中在工作分配,机器选择,操作顺序和工作运输等问题。然而,没有文献考虑工人资源DFJSP的重要作用。不考虑工人的生产策略可能会导致工人资源的浪费和任务分配的不平衡。
在这里插入图片描述
上图考虑或不考虑工人的两种 DFJSP 场景。图中,同一工厂有四个生产单元U1-U4(也称为四个分布式公司),每个单元包含多台机器,这些单元需要处理十个作业。两种模型的区别在于,有工人的DFJSP以10个作业和10个工人为输入,除了作业分配机器选择操作排序计划外,它还输出工人计划。没有工人的DFJSP主要根据机器数量生成调度解决方案,一旦工人不足以操作每个单元中的机器,就会导致调度方案不平衡具有工人的DFJSP可以通过同时调度机器工人资源来获得更具确定性和平衡的生产解决方案。

本文考虑 DFJSP 背景下的工人安排,DFJSPW。DFJSPW流程包括将工人分配到工厂将工作分配给工厂安排机器进行操作将工人分配到每个工厂的机器以及对所有操作进行排序。针对该问题制定了混合整数线性规划模型(MILP),以同时最小化机器的制造跨度最大工作量工人的工作量。鉴于模因算法的各种变体已被用于处理生产调度问题并取得了巨大成功,本文针对该问题设计了一种改进的模因算法(IMA)。通过与MILP模型和4种众所周知的多目标算法的比较,进行了广泛的实验验证了所提出的IMA的性能。分布式灵活作业车间调度问题自2010年首次研究发表以来成为热门话题。

文献表明,经典的DFJSP主要集中在作业分配机器分配操作排序上,但有限的论文讨论了DFJSP的扩展,如作业的运输和操作外包。考虑到现实世界分布式制造系统的复杂性,需要考虑更多更接近现实的DFJSP,例如DFJSP背景下的工人调度。

对生产调度中人为因素的研究主要可分为两类。一种是不同车间下工人的灵活性(也称为工人在操作机器中的多种技能),涉及并行机器调度,流水车间调度,混合流水车间调度,作业车间调度。设计很多策略来研究,例如启发式(、模因算法、回溯搜索算法、人工蜂群算法、非支配集成 fitness 排名算法、多目标进化算法 等等。关于分布式生产系统下人为因素的研究没有。因此,对分布式车间调度环境中的人为因素进行研究是必要的,也是有价值的。

2. 问题描述和数学建模
2.1 问题描述
DFJSPW 可以介绍如下。有 n 个作业需要在分布式工厂中处理。每个作业包含多个操作(将 OijO_{ij}Oij 表示为作业 i 的第 j 个操作)。每个工厂包括几台机器,每台机器可以由几个工人操作。 总共需要在 fff 个工厂中分配 www 名工人,每个工人花费不同的时间操作机器进行 OijO_{ij}Oij 加工。对于每项工作,所有工厂都可以用来处理它。对于每台机器,只考虑机器的部分灵活性,即 OijO_{ij}O

### 分布式柔性作业车间调度中的工厂分配问题 #### 车间调度的重要性及其挑战 车间调度在制造业和生产系统中扮演着至关重要的角色,旨在合理分配有限资源以实现生产效益的最大化。特别是在分布式环境中,柔性作业车间调度问题(Distributed Flexible Job Shop Scheduling Problem, DFJSP)不仅涉及机器的选择和工序的排序,还涉及到不同地理位置上的多个工厂之间的协调与合作[^1]。 #### 工厂分配的核心要素 DFJSP 中的工厂分配问题是决定哪些工件应该被指派给哪个特定地点的制造设施。这不仅仅是简单的地理分布问题,还需要综合考虑运输成本、交货期、生产能力等因素。为了有效解决这一难题,研究人员提出了多种策略和技术: - **算法的应用** 改进后的算法(Improved Memetic Algorithm, IMA)特别适用于处理复杂的多目标优化场景下的DFJSP。通过设计专门针对此问题类型的因算子——如设备分配算子、任务排序算子以及车间分配算子——可以显著提升搜索效率并增强找到全局最优解的能力[^4]。 - **变异操作的设计** 针对OS层的操作采用了一种独特的变异机制:即通过对选定位置处的一系列连续基因进行翻转来创建新个体;而在WS层面,则采取增加工作量较小的任务同时减少负载过重区域内的任务数量的方法来进行调整。这种双管齐下的方式有助于探索更广泛的空间结构,并促进群体多样性的发展[^5]。 ```matlab % MATLAB伪代码展示如何实施上述提到的部分技术细节 function new_population = apply_mutation_operator(population) % 假设population是一个包含当前代所有染色体(解决方案)的数据集 for i=1:length(population) chromosome = population{i}; if rand() < mutation_rate_OS % OS层变异: 翻转随机选中的部分序列 pos = ceil(rand * length(chromosome.OS)); segment_to_flip = chromosome.OS(pos:min(end,pos+flip_length-1)); flipped_segment = fliplr(segment_to_flip); chromosome.OS(pos:min(end,pos+flip_length-1)) = flipped_segment; end if rand() < mutation_rate_WS % WS层变异: 动态平衡各工厂的工作负荷 min_loaded_factory = find_min_load(); max_loaded_factory = find_max_load(); move_task_between_factories(min_loaded_factory,max_loaded_factory); end new_population{i} = chromosome; end end ``` #### 结合实际案例的研究进展 上海交通大学的刘学英利用拉格朗日松弛法解决了传统意义上的单个车间内部的调度问题。然而,在面对跨地区乃至跨国界的大型供应链网络时,这种方法可能显得力不从心。因此,现代研究更多聚焦于开发适应性强且计算高效的启发式/元启发式方法,以便更好地应对日益复杂化的工业需求[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值