文章目录
YOLOv11改进缝合注意力 | 深度优化的BiFormer模型-结合BiLevel Routing Attention与深度可分离卷积的创新应用(附代码)
一、本文介绍
YOLO(You Only Look Once)系列目标检测算法一直以来都是计算机视觉领域的热门选择。随着YOLOv11的发布,它在许多实际应用场景中取得了显著的性能提升。然而,面对日益复杂的目标检测任务,单纯依赖卷积神经网络(CNN)在某些情况下已经显得力不从心,特别是在处理小尺度、密集目标以及遮挡目标时,卷积操作的局部性限制了模型的表达能力。
在这一背景下,结合Transformer模型的注意力机制成为了一种行之有效的改进方式。BiFormer(双层路由注意力机制)作为一种新兴的注意力机制,凭借其高效的计算性能和查询感知的自适应性,为YOLOv11的目标检测能力提供了进一步的提升。本文将详细探讨如何将BiFormer注意力机制应用于YOLOv11,并与C2PSA机制相结合,优化目标检测性能。