YOLOv11改进缝合注意力 | 深度优化的BiFormer模型-结合BiLevel Routing Attention与深度可分离卷积的创新应用(附代码)

YOLOv11改进缝合注意力 | 深度优化的BiFormer模型-结合BiLevel Routing Attention与深度可分离卷积的创新应用(附代码)

一、本文介绍

YOLO(You Only Look Once)系列目标检测算法一直以来都是计算机视觉领域的热门选择。随着YOLOv11的发布,它在许多实际应用场景中取得了显著的性能提升。然而,面对日益复杂的目标检测任务,单纯依赖卷积神经网络(CNN)在某些情况下已经显得力不从心,特别是在处理小尺度、密集目标以及遮挡目标时,卷积操作的局部性限制了模型的表达能力。

在这一背景下,结合Transformer模型的注意力机制成为了一种行之有效的改进方式。BiFormer(双层路由注意力机制)作为一种新兴的注意力机制,凭借其高效的计算性能和查询感知的自适应性,为YOLOv11的目标检测能力提供了进一步的提升。本文将详细探讨如何将BiFormer注意力机制应用于YOLOv11,并与C2PSA机制相结合,优化目标检测性能。

在这里插入图片描述

二、BiFormer的机制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一键难忘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值