神经符号 AI融合深度学习与逻辑推理的系统实现
随着人工智能的不断进步,传统的深度学习方法在感知类任务(如图像识别、语音识别)上取得了重大突破,但却难以胜任需要高阶逻辑推理的任务。为了解决这个问题,“神经符号 AI(Neuro-Symbolic AI)”应运而生,它旨在融合神经网络的感知能力与符号推理系统的逻辑表达能力,从而打造更具智能、更可解释、更强泛化能力的AI系统。
一、神经符号 AI 的背景与动机
传统深度学习模型如CNN、RNN、Transformer等,依赖大量标注数据训练参数,并善于处理低级感知任务。然而,它们常常面临:
- 不可解释性强:模型输出难以解释;
- 对结构性知识的支持弱:无法处理规则、推理、常识等;
- 泛化能力差:从已学任务迁移到新任务较困难。
而符号主义 AI(Symbolic AI)基于逻辑规则与知识图谱,具有良好的可解释性与推理能力,却难以从感知数据中学习。
因此,融合两者的神经符号 AI 成为了当前 AI 研究的重要方向。
二、神经符号 AI 的整体架构
一个典