- 博客(3)
- 收藏
- 关注
原创 基于maltab数据探索案例——鸢尾花数据集以及算法(3)
基于MATLAB实现了K-Means算法和SVM算法,并将其应用于鸢尾花数据集上。通过实验验证,K-Means算法能够有效地对鸢尾花数据集进行聚类,并得到较好的聚类结果。然而,K-Means算法仍存在一些局限性,未来可以进一步探索如何改进算法以提高聚类的准确性和稳定性。同时,也可以尝试将K-Means算法与其他聚类算法进行结合,以充分利用各种算法的优势,提高聚类的性能。通过对鸢尾花数据集的数据探索和分析,我们发现决策树、SVM和KNN等多种分类模型都能在该数据集上取得良好的分类效果。
2024-08-04 16:32:31
1886
鸢尾花数据分析与挖掘数据分析大报告-数据探索数据分析数据可视化
鸢尾花数据分析,包括数据探索数据挖掘数据可视化显示,数据可视化—基于svm机器,决策树聚类,分类训练模型使用MATLAB实现鸢尾花数据的可视化、分类、聚类,可以让我们更直观地理解数据特征、提升数据分析的效率。在深入探讨这一过程之前,重要的是要理解数据集的特征:鸢尾花数据集是一个经典的多变量数据集,机器学习领域常用的一个数据集。包含150个样本,每个样本有4个特征(萼片长度、萼片宽度、花瓣长度、花瓣宽度)和对应的这些样本分为三类,分别对应鸢尾花的三个品种:Setosa、Versicolour和Virginica。由于鸢尾花数据集具有特征明确、类别清晰的特点,通过可视化可以观察不同特征之间的关系,分类和聚类则是根据特征将数据分成不同的类别,从而实现对鸢尾花种类的精准预测。
2024-08-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人