哈夫曼树及哈夫曼编码

本文探讨了一组字符A到G的频率分布,分别为9, 11, 5, 7, 8, 2, 3,并根据这些频率设计了最经济的哈夫曼编码。通过构建带权路径长度最短的哈夫曼树,实现了每个字符的二进制编码,如A-00, B-10, C-010, D-110, E-111, F-0110, G-0111。这个过程涉及到哈夫曼树的构造原则,即权值小的节点离根节点更远,以达到最优编码效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一组字符{A,B,C,D,E,F,G}出现的频率分别是{9,11,5,7,8,2,3},设计最经济的编码方案

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

所以编码为A-00,B-10,C-010,D-110,E-111,F-0110,G-0111

最佳归并树是带权路径长度最短的k叉(阶)哈夫曼树,构造步骤如下:

(1)若余数m=(n-1)%(k-1)≠0,则需附加k-1-m个长度为0的虚段,以使每次归并都可以对应k个段。(n为初始归并段的个数)
(2) 按照哈夫曼树的构造原则(权值越小的结点离根结点越远)构造最佳归并树。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值