PAT[乙级]1016-1020

本文介绍了四道编程竞赛题目,涉及大整数运算、模拟游戏策略和贪心算法的应用。1016题要求计算整数的特定部分之和;1017题实现大整数除法;1018题模拟锤子剪刀布游戏并分析胜率;1020题通过贪心策略解决月饼销售最大收益问题。每道题都提供了详细的解题思路和C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1016 部分A+B (15 分)

题目描述

正 整 数 A 的 “ D A ( 为 1 位 整 数 ) 部 分 ” 定 义 为 由 A 中 所 有 D A 组 成 的 新 整 数 P A 。 例 如 : 给 定 A = 3862767 , D A = 6 , 则 A 的 “ 6 部 分 ” P A 是 66 , 因 为 A 中 有 2 个 6 。 现 给 定 A 、 D A 、 B 、 D B , 请 编 写 程 序 计 算 P A + P B 。 正整数A的“D_A(为1位整数)部分”定义为由A中所有D_A组成的新整数P_A。例如:给定A = 3862767,D_A= 6,则A的“6部分”P_A是66,因为A中有2个6。现给定A、D_A、B、D_B,请编写程序计算P_A + P_B。 ADA1ADAPAA=3862767DA=6A6PA66A26ADABDBPA+PB
输 ⼊ 格 式 输⼊格式
输 ⼊ 在 ⼀ ⾏ 中 依 次 给 出 A 、 D A 、 B 、 D B , 中 间 以 空 格 分 隔 , 其 中 0 < A , B < 1 0 10 。 输⼊在⼀⾏中依次给出A、D_A、B、D_B,中间以空格分隔,其中0 < A, B < 10^{10}。 ADABDB0<A,B<1010
输 出 格 式 : 输出格式:
在 ⼀ ⾏ 中 输 出 P A + P B 的 值 在⼀⾏中输出P_A + P_B的值 PA+PB

输入样例 1:
3862767 6 13530293 3

输出样例 1:
399

输入样例 2:
3862767 1 13530293 8

输出样例 2:
0

代码

#include <iostream>
#include <cstring>

using namespace std;

int main() {
    string a,b;
    char da,db;
    cin >> a >> da >> b >> db;
    int k = 0 , j = 0;
    for(int i = 0 ; i < a.length() ; ++i)
        if(a[i] == da) ++k;//计算da的个数
    for(int i = 0 ; i < b.length() ; ++i)
        if(b[i] == db) ++j;//计算db的个数
    int pa = 0,pb = 0;
    //求pa,pb
    while(k--) pa = pa * 10 + da-'0';
    while(j--) pb = pb * 10 + db-'0';
    cout << pa + pb;
    return 0;
}

1017. A除以B (20) [大整数运算]

题目描述

本题要求计算 A/B,其中 A 是不超过 1000 位的正整数,B 是 1 位正整数。你需要输出商数 Q 和余数 R,使得 A=B×Q+R 成立。

输入格式:
输入在一行中依次给出 A 和 B,中间以 1 空格分隔。

输出格式:
在一行中依次输出 Q 和 R,中间以 1 空格分隔。

输入样例:
123456789050987654321 7

输出样例:
17636684150141093474 3

代码

请添加图片描述

#include <iostream>
using namespace std;

int main() {
    string a,q;
    int b,t = 0;
    cin >> a >> b;
    if(a.size() == 1)//考虑只有一位数的情况
        cout << (a[0]-'0') / b;
    for(auto i : a) {
        t = t % b * 10 + i-'0';
        q += t/b + '0';
    }
    q.erase(0,q.find_first_not_of("0"));//是从第一个数开始相除,可能会有前置0,需要去除
    for(auto x : q) cout << x;
    cout <<" "<< t%b <<endl;
    return 0;
}

模 拟 ⼿ 动 除 法 的 过 程 , 每 次 ⽤ 第 ⼀ 位 去 除 以 B , 如 果 得 到 的 商 不 是 0 就 输 出 , 否 则 就 ∗ 10 + 下 ⼀ 位 , 直 到 最 后 的 数 为 余 数 模拟⼿动除法的过程,每次⽤第⼀位去除以B,如果得到的商不是0就输出,否则就*10+下⼀ 位,直到最后的数为余数 ⼿B010+

1018. 锤⼦剪⼑布 (20) [模拟]

题目描述

大家应该都会玩“锤子剪刀布”的游戏:两人同时给出手势,胜负规则如图所示:
请添加图片描述
现给出两人的交锋记录,请统计双方的胜、平、负次数,并且给出双方分别出什么手势的胜算最大。

输入格式:
输入第 1 行给出正整数 N( ≤ 1 0 5 ≤10^5 105),即双方交锋的次数。随后 N 行,每行给出一次交锋的信息,即甲、乙双方同时给出的的手势。C 代表“锤子”、J 代表“剪刀”、B 代表“布”,第 1 个字母代表甲方,第 2 个代表乙方,中间有 1 个空格。

输出格式:
输出第 1、2 行分别给出甲、乙的胜、平、负次数,数字间以 1 个空格分隔。第 3 行给出两个字母,分别代表甲、乙获胜次数最多的手势,中间有 1 个空格。如果解不唯一,则输出按字母序最小的解。

输入样例:
10
C J
J B
C B
B B
B C
C C
C B
J B
B C
J J

输出样例:
5 3 2
2 3 5
B B

代码

#include <bits/stdc++.h>
using namespace std;
int j[4],jw[200],yw[200],n;//j[]为计数数组,jw[],yw[]为存储甲乙每次赢的手势
char f(int w[]) {//实现求次数最多的手势的功能
    int max = -1,l = 0;
    for(int i = 'B' ; i <= 'J' ; ++i)
		if(w[i])
			if(max < w[i]) {
				l = i;
				max = w[i];
			}
    return l;
}
int main() {
	cin >> n;
	for(int i = 0 ; i < n ; ++i) {
		char jia,yi;
		cin >> jia >> yi;
		if((jia=='C' && yi=='J') || (jia=='J' && yi=='B') || (jia=='B'&& yi=='C')) {
			j[0]++;//甲赢,乙输的次数
			jw[jia]++;//甲赢的手势
		}else if( jia == yi ) {
			j[1]++;//平的次数
		}else {
			j[2]++;//甲输,乙赢的次数
			yw[yi]++;//乙赢的手势
		}
	}
	printf("%d %d %d\n%d %d %d\n",j[0],j[1],j[2],j[2],j[1],j[0]);
	if     (j[0] == n) cout << f(jw) << " B";       //甲全获胜,乙输入B
	else if(j[1] == n) cout << "B B";               //甲乙平局,两者获胜次数为0,都输入B
    else if(j[2] == n) cout << "B " << f(yw);       //乙全获胜,甲输入B
    else               cout << f(jw) <<" "<< f(yw);
	return 0;
}

注意:

需 要 考 虑 四 种 情 况 ( ① 甲 乙 平 局 ; ② 甲 全 获 胜 ; ③ 乙 全 获 胜 ; ④ 其 他 ) , 这 点 非 常 容 易 遗 漏 需要考虑四种情况(①甲乙平局;②甲全获胜;③乙全获胜;④其他),这点非常容易遗漏 (;;;),

1019 数字黑洞 (20 分)[数学问题]

题目描述

给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...

现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。

输入格式:
输入给出一个 (0, 1 0 4 10^4 104) 区间内的正整数 N。

输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。

输入样例 1:
6767

输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174

输入样例 2:
2222

输出样例 2:
2222 - 2222 = 0000

代码

#include <iostream>
#include <algorithm>
using namespace std;
int main() {
    string s;
    cin >> s;
    s.insert(0, 4 - s.length(), '0');
    if(s[0]==s[1] && s[0]==s[2] && s[0]==s[3]) {//四个数字全相等
		cout << s << " - " << s <<" = 0000";
    } else {
		while(1) {
	  		sort(s.begin(),s.end());//从小到大
			string s1 = s;//存储该字符串
			reverse(s.begin(),s.end());//从大到小
   			cout << s << " - " << s1 << " = ";
			s = to_string(stoi(s)-stoi(s1));//变成整数后相减再变成字符串,便于下一次循环
			s.insert(0, 4 - s.length(), '0');//添加前置0
			cout << s << endl;
		    if(s == "6174") break;
		}
	}
    return 0;
}

说明:

字 符 串 转 为 整 型 的 时 候 如 果 前 面 有 0 会 自 动 删 掉 0 , 但 题 目 要 求 必 须 是 4 位 数 , 所 以 转 为 字 符 串 后 需 要 手 动 加 0 字符串转为整型的时候如果前面有0会自动删掉0,但题目要求必须是4位数,所以转为字符串后需要手动加0 00,4,0

1020. 月饼 (25) [贪⼼算法]

题目描述

月饼是中国人在中秋佳节时吃的一种传统食品,不同地区有许多不同风味的月饼。现给定所有种类月饼的库存量、总售价、以及市场的最大需求量,请你计算可以获得的最大收益是多少。

注意:销售时允许取出一部分库存。样例给出的情形是这样的:假如我们有 3 种月饼,其库存量分别为 18、15、10 万吨,总售价分别为 75、72、45 亿元。如果市场的最大需求量只有 20 万吨,那么我们最大收益策略应该是卖出全部 15 万吨第 2 种月饼、以及 5 万吨第 3 种月饼,获得 72 + 45/2 = 94.5(亿元)。

输入格式:
每个输入包含一个测试用例。每个测试用例先给出一个不超过 1000 的正整数 N 表示月饼的种类数、以及不超过 500(以万吨为单位)的正整数 D 表示市场最大需求量。随后一行给出 N 个正数表示每种月饼的库存量(以万吨为单位);最后一行给出 N 个正数表示每种月饼的总售价(以亿元为单位)。数字间以空格分隔。

输出格式:
对每组测试用例,在一行中输出最大收益,以亿元为单位并精确到小数点后 2 位。

输入样例:
3 20
18 15 10
75 72 45

输出样例:
94.50

代码

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

struct mooncake {
    double mount , price , unit;
};
bool cmp(mooncake a , mooncake b) {
    return a.unit > b.unit ;
}
int main() {
    int n,d;
    cin >> n >> d;
    vector<mooncake> v(n);
    for(int i = 0 ; i < n ; ++i){
        cin >> v[i].mount;
    } //存储存量
    for(int i = 0 ; i < n ; ++i){
        cin >> v[i].price;
    } //存储总价
    for(int i = 0 ; i < n ; ++i){
        v[i].unit = v[i].price * 1.0 / v[i].mount;
    } //存储单价
    sort(v.begin() , v.end() , cmp);//从小到大排序
    double result = 0.0;
    for(int i = 0 ; i < n ; ++i) {
        if(v[i].mount <= d) {
            result += v[i].price;
        } else {
            result += v[i].unit * d;
            break;
        }
        d -= v[i].mount;
    }
    printf("%.2lf",result);
    return 0;
}

思路:

  1. 这 里 采 用 “ 总 是 选 择 单 价 最 高 的 月 饼 出 售 , 可 以 获 得 最 大 的 利 润 ” 的 策 略 . 这里采用“总是选择单价最高的月饼出售,可以获得最大的利润”的策略. .

    因 此 , 对 每 种 月 饼 , 都 根 据 其 库 存 量 和 总 售 价 来 计 算 出 该 种 月 饼 的 单 价 。 因此,对每种月饼,都根据其库存量和总售价来计算出该种月饼的单价。

  2. 从 单 价 高 的 月 饼 开 始 枚 举 。 从单价高的月饼开始枚举。
    ① 需 求 量 高 于 该 种 月 饼 仓 库 量 , 则 卖 出 当 前 种 类 的 所 有 月 饼 , 然 后 需 求 量 = 原 来 需 求 量 − 当 前 月 饼 库 存 量 , 收 益 值 增 加 为 当 前 月 饼 的 总 售 价 大 小 。 ①需求量高于该种月饼仓库量 ,则卖出当前种类的所有月饼,然后 需求量=原来需求量-当前月饼库存量,收益值增加为当前月饼的总售价大小。 =
    ② 当 需 求 量 小 于 月 饼 仓 库 量 , 则 只 提 供 需 求 量 大 小 的 月 饼 。 ②当需求量小于月饼仓库量,则只提供需求量大小的月饼。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值