PAT[乙级]1016-1020
1016 部分A+B (15 分)
题目描述
正
整
数
A
的
“
D
A
(
为
1
位
整
数
)
部
分
”
定
义
为
由
A
中
所
有
D
A
组
成
的
新
整
数
P
A
。
例
如
:
给
定
A
=
3862767
,
D
A
=
6
,
则
A
的
“
6
部
分
”
P
A
是
66
,
因
为
A
中
有
2
个
6
。
现
给
定
A
、
D
A
、
B
、
D
B
,
请
编
写
程
序
计
算
P
A
+
P
B
。
正整数A的“D_A(为1位整数)部分”定义为由A中所有D_A组成的新整数P_A。例如:给定A = 3862767,D_A= 6,则A的“6部分”P_A是66,因为A中有2个6。现给定A、D_A、B、D_B,请编写程序计算P_A + P_B。
正整数A的“DA(为1位整数)部分”定义为由A中所有DA组成的新整数PA。例如:给定A=3862767,DA=6,则A的“6部分”PA是66,因为A中有2个6。现给定A、DA、B、DB,请编写程序计算PA+PB。
输
⼊
格
式
输⼊格式
输⼊格式
输
⼊
在
⼀
⾏
中
依
次
给
出
A
、
D
A
、
B
、
D
B
,
中
间
以
空
格
分
隔
,
其
中
0
<
A
,
B
<
1
0
10
。
输⼊在⼀⾏中依次给出A、D_A、B、D_B,中间以空格分隔,其中0 < A, B < 10^{10}。
输⼊在⼀⾏中依次给出A、DA、B、DB,中间以空格分隔,其中0<A,B<1010。
输
出
格
式
:
输出格式:
输出格式:
在
⼀
⾏
中
输
出
P
A
+
P
B
的
值
在⼀⾏中输出P_A + P_B的值
在⼀⾏中输出PA+PB的值
输入样例 1:
3862767 6 13530293 3
输出样例 1:
399
输入样例 2:
3862767 1 13530293 8
输出样例 2:
0
代码
#include <iostream>
#include <cstring>
using namespace std;
int main() {
string a,b;
char da,db;
cin >> a >> da >> b >> db;
int k = 0 , j = 0;
for(int i = 0 ; i < a.length() ; ++i)
if(a[i] == da) ++k;//计算da的个数
for(int i = 0 ; i < b.length() ; ++i)
if(b[i] == db) ++j;//计算db的个数
int pa = 0,pb = 0;
//求pa,pb
while(k--) pa = pa * 10 + da-'0';
while(j--) pb = pb * 10 + db-'0';
cout << pa + pb;
return 0;
}
1017. A除以B (20) [大整数运算]
题目描述
本题要求计算 A/B,其中 A 是不超过 1000 位的正整数,B 是 1 位正整数。你需要输出商数 Q 和余数 R,使得 A=B×Q+R 成立。
输入格式:
输入在一行中依次给出 A 和 B,中间以 1 空格分隔。
输出格式:
在一行中依次输出 Q 和 R,中间以 1 空格分隔。
输入样例:
123456789050987654321 7
输出样例:
17636684150141093474 3
代码
#include <iostream>
using namespace std;
int main() {
string a,q;
int b,t = 0;
cin >> a >> b;
if(a.size() == 1)//考虑只有一位数的情况
cout << (a[0]-'0') / b;
for(auto i : a) {
t = t % b * 10 + i-'0';
q += t/b + '0';
}
q.erase(0,q.find_first_not_of("0"));//是从第一个数开始相除,可能会有前置0,需要去除
for(auto x : q) cout << x;
cout <<" "<< t%b <<endl;
return 0;
}
模 拟 ⼿ 动 除 法 的 过 程 , 每 次 ⽤ 第 ⼀ 位 去 除 以 B , 如 果 得 到 的 商 不 是 0 就 输 出 , 否 则 就 ∗ 10 + 下 ⼀ 位 , 直 到 最 后 的 数 为 余 数 模拟⼿动除法的过程,每次⽤第⼀位去除以B,如果得到的商不是0就输出,否则就*10+下⼀ 位,直到最后的数为余数 模拟⼿动除法的过程,每次⽤第⼀位去除以B,如果得到的商不是0就输出,否则就∗10+下⼀位,直到最后的数为余数
1018. 锤⼦剪⼑布 (20) [模拟]
题目描述
大家应该都会玩“锤子剪刀布”的游戏:两人同时给出手势,胜负规则如图所示:
现给出两人的交锋记录,请统计双方的胜、平、负次数,并且给出双方分别出什么手势的胜算最大。
输入格式:
输入第 1 行给出正整数 N(
≤
1
0
5
≤10^5
≤105),即双方交锋的次数。随后 N 行,每行给出一次交锋的信息,即甲、乙双方同时给出的的手势。C
代表“锤子”、J
代表“剪刀”、B
代表“布”,第 1 个字母代表甲方,第 2 个代表乙方,中间有 1 个空格。
输出格式:
输出第 1、2 行分别给出甲、乙的胜、平、负次数,数字间以 1 个空格分隔。第 3 行给出两个字母,分别代表甲、乙获胜次数最多的手势,中间有 1 个空格。如果解不唯一,则输出按字母序最小的解。
输入样例:
10
C J
J B
C B
B B
B C
C C
C B
J B
B C
J J
输出样例:
5 3 2
2 3 5
B B
代码
#include <bits/stdc++.h>
using namespace std;
int j[4],jw[200],yw[200],n;//j[]为计数数组,jw[],yw[]为存储甲乙每次赢的手势
char f(int w[]) {//实现求次数最多的手势的功能
int max = -1,l = 0;
for(int i = 'B' ; i <= 'J' ; ++i)
if(w[i])
if(max < w[i]) {
l = i;
max = w[i];
}
return l;
}
int main() {
cin >> n;
for(int i = 0 ; i < n ; ++i) {
char jia,yi;
cin >> jia >> yi;
if((jia=='C' && yi=='J') || (jia=='J' && yi=='B') || (jia=='B'&& yi=='C')) {
j[0]++;//甲赢,乙输的次数
jw[jia]++;//甲赢的手势
}else if( jia == yi ) {
j[1]++;//平的次数
}else {
j[2]++;//甲输,乙赢的次数
yw[yi]++;//乙赢的手势
}
}
printf("%d %d %d\n%d %d %d\n",j[0],j[1],j[2],j[2],j[1],j[0]);
if (j[0] == n) cout << f(jw) << " B"; //甲全获胜,乙输入B
else if(j[1] == n) cout << "B B"; //甲乙平局,两者获胜次数为0,都输入B
else if(j[2] == n) cout << "B " << f(yw); //乙全获胜,甲输入B
else cout << f(jw) <<" "<< f(yw);
return 0;
}
注意:
需 要 考 虑 四 种 情 况 ( ① 甲 乙 平 局 ; ② 甲 全 获 胜 ; ③ 乙 全 获 胜 ; ④ 其 他 ) , 这 点 非 常 容 易 遗 漏 需要考虑四种情况(①甲乙平局;②甲全获胜;③乙全获胜;④其他),这点非常容易遗漏 需要考虑四种情况(①甲乙平局;②甲全获胜;③乙全获胜;④其他),这点非常容易遗漏
1019 数字黑洞 (20 分)[数学问题]
题目描述
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174
,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767
开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,
1
0
4
10^4
104) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000
;否则将计算的每一步在一行内输出,直到 6174
作为差出现,输出格式见样例。注意每个数字按 4
位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
代码
#include <iostream>
#include <algorithm>
using namespace std;
int main() {
string s;
cin >> s;
s.insert(0, 4 - s.length(), '0');
if(s[0]==s[1] && s[0]==s[2] && s[0]==s[3]) {//四个数字全相等
cout << s << " - " << s <<" = 0000";
} else {
while(1) {
sort(s.begin(),s.end());//从小到大
string s1 = s;//存储该字符串
reverse(s.begin(),s.end());//从大到小
cout << s << " - " << s1 << " = ";
s = to_string(stoi(s)-stoi(s1));//变成整数后相减再变成字符串,便于下一次循环
s.insert(0, 4 - s.length(), '0');//添加前置0
cout << s << endl;
if(s == "6174") break;
}
}
return 0;
}
说明:
字 符 串 转 为 整 型 的 时 候 如 果 前 面 有 0 会 自 动 删 掉 0 , 但 题 目 要 求 必 须 是 4 位 数 , 所 以 转 为 字 符 串 后 需 要 手 动 加 0 字符串转为整型的时候如果前面有0会自动删掉0,但题目要求必须是4位数,所以转为字符串后需要手动加0 字符串转为整型的时候如果前面有0会自动删掉0,但题目要求必须是4位数,所以转为字符串后需要手动加0
1020. 月饼 (25) [贪⼼算法]
题目描述
月饼是中国人在中秋佳节时吃的一种传统食品,不同地区有许多不同风味的月饼。现给定所有种类月饼的库存量、总售价、以及市场的最大需求量,请你计算可以获得的最大收益是多少。
注意:销售时允许取出一部分库存。样例给出的情形是这样的:假如我们有 3 种月饼,其库存量分别为 18、15、10 万吨,总售价分别为 75、72、45 亿元。如果市场的最大需求量只有 20 万吨,那么我们最大收益策略应该是卖出全部 15 万吨第 2 种月饼、以及 5 万吨第 3 种月饼,获得 72 + 45/2 = 94.5(亿元)。
输入格式:
每个输入包含一个测试用例。每个测试用例先给出一个不超过 1000 的正整数 N 表示月饼的种类数、以及不超过 500(以万吨为单位)的正整数 D 表示市场最大需求量。随后一行给出 N 个正数表示每种月饼的库存量(以万吨为单位);最后一行给出 N 个正数表示每种月饼的总售价(以亿元为单位)。数字间以空格分隔。
输出格式:
对每组测试用例,在一行中输出最大收益,以亿元为单位并精确到小数点后 2 位。
输入样例:
3 20
18 15 10
75 72 45
输出样例:
94.50
代码
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
struct mooncake {
double mount , price , unit;
};
bool cmp(mooncake a , mooncake b) {
return a.unit > b.unit ;
}
int main() {
int n,d;
cin >> n >> d;
vector<mooncake> v(n);
for(int i = 0 ; i < n ; ++i){
cin >> v[i].mount;
} //存储存量
for(int i = 0 ; i < n ; ++i){
cin >> v[i].price;
} //存储总价
for(int i = 0 ; i < n ; ++i){
v[i].unit = v[i].price * 1.0 / v[i].mount;
} //存储单价
sort(v.begin() , v.end() , cmp);//从小到大排序
double result = 0.0;
for(int i = 0 ; i < n ; ++i) {
if(v[i].mount <= d) {
result += v[i].price;
} else {
result += v[i].unit * d;
break;
}
d -= v[i].mount;
}
printf("%.2lf",result);
return 0;
}
思路:
-
这 里 采 用 “ 总 是 选 择 单 价 最 高 的 月 饼 出 售 , 可 以 获 得 最 大 的 利 润 ” 的 策 略 . 这里采用“总是选择单价最高的月饼出售,可以获得最大的利润”的策略. 这里采用“总是选择单价最高的月饼出售,可以获得最大的利润”的策略.
因 此 , 对 每 种 月 饼 , 都 根 据 其 库 存 量 和 总 售 价 来 计 算 出 该 种 月 饼 的 单 价 。 因此,对每种月饼,都根据其库存量和总售价来计算出该种月饼的单价。 因此,对每种月饼,都根据其库存量和总售价来计算出该种月饼的单价。
-
从 单 价 高 的 月 饼 开 始 枚 举 。 从单价高的月饼开始枚举。 从单价高的月饼开始枚举。
① 需 求 量 高 于 该 种 月 饼 仓 库 量 , 则 卖 出 当 前 种 类 的 所 有 月 饼 , 然 后 需 求 量 = 原 来 需 求 量 − 当 前 月 饼 库 存 量 , 收 益 值 增 加 为 当 前 月 饼 的 总 售 价 大 小 。 ①需求量高于该种月饼仓库量 ,则卖出当前种类的所有月饼,然后 需求量=原来需求量-当前月饼库存量,收益值增加为当前月饼的总售价大小。 ①需求量高于该种月饼仓库量,则卖出当前种类的所有月饼,然后需求量=原来需求量−当前月饼库存量,收益值增加为当前月饼的总售价大小。
② 当 需 求 量 小 于 月 饼 仓 库 量 , 则 只 提 供 需 求 量 大 小 的 月 饼 。 ②当需求量小于月饼仓库量,则只提供需求量大小的月饼。 ②当需求量小于月饼仓库量,则只提供需求量大小的月饼。