Prim模板
前言
prim算法的核心在于先定义一个最小生成树集合,初始时这个集合只有一个点为1
,然后不断将这个集合扩大,直到最后所有结点都在这个生成树集合里就结束。
而扩张生成树的步骤又与dijkstra算法尤为相似。在这里,对于每个点(当然,要这个点没在树的集合里),计算出它到生成树的“距离”,
这里的距离的含义是指:该点可能与生成树中的多个结点之间都有一条路径,在这些路径中选择出最短的那一条,其值就当作到生成树的距离。
用数组min_dist[]
表示,如min_dist[i]
就是结点i
到生成树的距离。
然后,再在这一堆距离集合里面,挑出距离最小的那一个结点t
,作为这次要并入到生成树的结点。
并且还要在每次新的结点加入生成树之后更新一遍min_dist[]
的值,这一步是通过for(树外的结点 j)
:min_dist[j] = min(min_dist[j], g[t][j])
来完成。它的含义是指,由于在树中加了t
这个点,那么树外的每个结点都有到生成树的距离变小这个可能,故要从t
这个角度去更新它们。
设定一个ans
,重复上面并入新结点的步骤n
次,每次都记录着ans += min_dist[新加结点t]
,最后ans
的值就为最小生成树的大小。
题目描述
给定一个 n n n 个点 m m m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
给定一张边带权的无向图 G = ( V , E ) G=(V,E) G=(V,E),其中 V V V 表示图中点的集合, E E E 表示图中边的集合, n = ∣ V ∣ , m = ∣ E ∣ n=|V|,m=|E| n=∣V∣,m=∣E∣。
由 V V V 中的全部 n n n 个顶点和 E E E 中 n − 1 n−1 n−1 条边构成的无向连通子图被称为 G G G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G G G 的最小生成树。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。
数据范围
1
≤
n
≤
500
1≤n≤500
1≤n≤500,
1
≤
m
≤
1
0
5
1≤m≤10^5
1≤m≤105,
图中涉及边的边权的绝对值均不超过 10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
C++代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
#define Max_N 510
int g[Max_N][Max_N];
int min_dist[Max_N];
bool st[Max_N] = {false};
int n, m;
int prim(){
memset(min_dist, 0x3f, sizeof(min_dist));
int ans = 0;
min_dist[1] = 0;
for(int i = 1;i <= n;i ++){
int t = -1; //t作为新的将并入点
for(int j = 1;j <= n;j ++){
if(!st[j] && (t == -1 || min_dist[j] < min_dist[t]))
t = j;
}
if(min_dist[t] == 0x3f3f3f3f) return 0x3f3f3f3f; //连通分量 > 1
ans += min_dist[t];
st[t] = true;
for(int j = 1;j <= n;j ++){
if(!st[j]) min_dist[j] = min(min_dist[j], g[t][j]);
}
}
return ans;
}
int main(){
int u, v, w;
cin >> n >> m;
memset(g, 0x3f3f3f3f, sizeof(g));
for(int i = 0;i < m;i ++){
cin >> u >> v >> w;
g[u][v] = g[v][u] = min(g[u][v], w);
}
int res = prim();
if (res == 0x3f3f3f3f) cout << "impossible" << endl;
else cout << res << endl;
return 0;
}
kruskal模板
前言
kruskal算法本质上是比较简单的。首先,对图中的每条边的权值w
进行一个sort排序,然后再将这些边挨着挨着往生成树集合里面添加,但添加时有一个规则就是不能构成环,如果遇到了一条边使得它加入后生成树构成环,那么跳过就可以了。
而为了实现上面的步骤会引入一个数据结构——并查集,因为涉及到一些集合上的合并与查找。
并查集的讲解可以参考这篇文章👉👉:并查集(Union-Find)。
如此一来,对于上面的环的判断,就是将新并入边的两个相邻结点u
和v
,查找他们各自的祖先,如果fa[u] == fa[v]
那么说明它们已经在一个集合里了,不能将这条边加入。否则,就是fa[find(u)] = find(v)
:将该两点添加到一个集合里面。要注意的是,这些集合可能会有很多个,但是它们最终总会并成一个集合,而这个集合就是最终的最小生成树。
题目描述
还是刚刚上面的题目描述
C++代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 2 * 10e5 + 10;
struct Edge{
int u, v, w;
bool operator < (const Edge &e) const{ //重载"<"运算符
return w < e.w;
}
}edges[N];
int n, m, cnt = 0, res = 0;
int fa[100010];
int find(int x){
if(fa[x] != x) fa[x] = find(fa[x]);
return fa[x];
}
int kruskal(){
sort(edges, edges + m);
for(int i = 1;i <= n;i ++) fa[i] = i; //初始化各结点的并查集
for(int i = 0;i < m;i ++){
int fu = find(edges[i].u), fv = find(edges[i].v);
if(fu != fv){
fa[fu] = fv; //合并成一个集合
res += edges[i].w;
cnt ++;
}
}
}
int main(){
cin >> n >> m;
int a, b, c;
for(int i = 0;i < m;i ++){
cin >> a >> b >> c;
edges[i] = {a, b, c};
}
kruskal();
if(cnt < n - 1) cout << "impossible" << endl;
else cout << res << endl;
return 0;
}
区别
它们区别主要体现在图具体的情况。
如代码中可见,prim一般都是用的邻接矩阵来存图,这也就必然导致了它的应用情景多为稠密图;
而kruskal中的图均是用结构体edge
存边从而间接性存图,故而决定了它适用于稀疏图。