最小生成树基础模板


Prim模板

前言

prim算法的核心在于先定义一个最小生成树集合,初始时这个集合只有一个点为1,然后不断将这个集合扩大,直到最后所有结点都在这个生成树集合里就结束。

而扩张生成树的步骤又与dijkstra算法尤为相似。在这里,对于每个点(当然,要这个点没在树的集合里),计算出它到生成树的“距离”

这里的距离的含义是指:该点可能与生成树中的多个结点之间都有一条路径,在这些路径中选择出最短的那一条,其值就当作到生成树的距离。
用数组min_dist[]表示,如min_dist[i]就是结点i到生成树的距离。

然后,再在这一堆距离集合里面,挑出距离最小的那一个结点t,作为这次要并入到生成树的结点

并且还要在每次新的结点加入生成树之后更新一遍min_dist[]的值,这一步是通过for(树外的结点 j)min_dist[j] = min(min_dist[j], g[t][j])来完成。它的含义是指,由于在树中加了t这个点,那么树外的每个结点都有到生成树的距离变小这个可能,故要从t这个角度去更新它们。

设定一个ans,重复上面并入新结点的步骤n次,每次都记录着ans += min_dist[新加结点t],最后ans的值就为最小生成树的大小。


题目描述

给定一个 n n n 个点 m m m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G = ( V , E ) G=(V,E) G=(V,E),其中 V V V 表示图中点的集合, E E E 表示图中边的集合, n = ∣ V ∣ , m = ∣ E ∣ n=|V|,m=|E| n=Vm=E

V V V 中的全部 n n n 个顶点和 E E E n − 1 n−1 n1 条边构成的无向连通子图被称为 G G G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G G G 的最小生成树。

输入格式
第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围
1 ≤ n ≤ 500 1≤n≤500 1n500,
1 ≤ m ≤ 1 0 5 1≤m≤10^5 1m105,
图中涉及边的边权的绝对值均不超过 10000。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

C++代码

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

#define Max_N 510

int g[Max_N][Max_N];
int min_dist[Max_N];
bool st[Max_N] = {false};
int n, m;

int prim(){
    memset(min_dist, 0x3f, sizeof(min_dist));
    int ans = 0;
    min_dist[1] = 0;
    for(int i = 1;i <= n;i ++){
        int t = -1;     //t作为新的将并入点
        for(int j = 1;j <= n;j ++){
            if(!st[j] && (t == -1 || min_dist[j] < min_dist[t]))
                t = j;
        }
        if(min_dist[t] == 0x3f3f3f3f)      return 0x3f3f3f3f;      //连通分量 > 1
        ans += min_dist[t];
        st[t] = true;
        for(int j = 1;j <= n;j ++){
            if(!st[j])      min_dist[j] = min(min_dist[j], g[t][j]);
        }
    }
    
    return ans;
}

int main(){
    int u, v, w;
    cin >> n >> m;
    memset(g, 0x3f3f3f3f, sizeof(g));
    for(int i = 0;i < m;i ++){
        cin >> u >> v >> w;
        g[u][v] = g[v][u] =  min(g[u][v], w);
    }
    int res = prim();
    if (res == 0x3f3f3f3f)       cout << "impossible" << endl;
    else    cout << res << endl;
    return 0;
}

kruskal模板

前言

kruskal算法本质上是比较简单的。首先,对图中的每条边的权值w进行一个sort排序,然后再将这些边挨着挨着往生成树集合里面添加,但添加时有一个规则就是不能构成,如果遇到了一条边使得它加入后生成树构成环,那么跳过就可以了。

而为了实现上面的步骤会引入一个数据结构——并查集,因为涉及到一些集合上的合并与查找。

并查集的讲解可以参考这篇文章👉👉:并查集(Union-Find)

如此一来,对于上面的环的判断,就是将新并入边的两个相邻结点uv,查找他们各自的祖先,如果fa[u] == fa[v]那么说明它们已经在一个集合里了,不能将这条边加入。否则,就是fa[find(u)] = find(v):将该两点添加到一个集合里面。要注意的是,这些集合可能会有很多个,但是它们最终总会并成一个集合,而这个集合就是最终的最小生成树。


题目描述

还是刚刚上面的题目描述


C++代码

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 2 * 10e5 + 10;

struct Edge{
    int u, v, w;
    bool operator < (const Edge &e) const{      //重载"<"运算符
        return w < e.w;
    }
}edges[N];

int n, m, cnt = 0, res = 0;
int fa[100010];

int find(int x){
    if(fa[x] != x)      fa[x] = find(fa[x]);
    return fa[x];
}

int kruskal(){
    sort(edges, edges + m);
    for(int i = 1;i <= n;i ++)      fa[i] = i;      //初始化各结点的并查集
    
    for(int i = 0;i < m;i ++){
        int fu = find(edges[i].u), fv = find(edges[i].v);
        if(fu != fv){
            fa[fu] = fv;        //合并成一个集合
            res += edges[i].w;
            cnt ++;
        }
    }
}

int main(){
    cin >> n >> m;
    int a, b, c;
    for(int i = 0;i < m;i ++){
        cin >> a >> b >> c;
        edges[i] = {a, b, c};
    }
    
    kruskal();
    
    if(cnt < n - 1)       cout << "impossible" << endl;
    else    cout << res << endl;
    return 0;
}

区别

它们区别主要体现在图具体的情况。
如代码中可见,prim一般都是用的邻接矩阵来存图,这也就必然导致了它的应用情景多为稠密图
而kruskal中的图均是用结构体edge存边从而间接性存图,故而决定了它适用于稀疏图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值