自适应控制

本文详细介绍了如何设计一个针对二阶SISO系统的自适应控制器,利用Lyapunov稳定性原理,通过状态变量、控制器结构和参数估计误差来确保系统的稳定。关键步骤包括选择状态变量、设计控制器形式、构建Lyapunov函数并利用其指导自适应率更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型参考自适应控制系统结构

模型参考自适应控制系统的典型结构如下图所示,系统由参考模型、控制器和自适应率组成。

  • 控制器包括被控对象的前馈控制器和反馈控制器,可以根据自适应率进行调整;
  • 参考模型实际上是一种理想控制系统,其输出代表了期望的性能,对调节系统的特性要求,如超调量、阻尼时间等等;
  • 自适应率用来消除被控对象输出和参考模型期望输出的误差,改变控制器参数或者生成辅助输入。

img

基于LyapunovLyapunovLyapunov稳定性原理的二阶SISOSISOSISO系统自适应控制器设计

考虑如下二阶SISOSISOSISO系统模型:

x¨+θTΦ(x,x˙)=u\ddot{x}+\theta ^T \Phi(x,\dot{x})=ux¨+θTΦ(x,x˙)=u

其中θ=[θ1θ2θ3]T∈R3\theta = [\theta _1\quad \theta _2\quad \theta _3]^T \in \mathbb{R}^3θ=[θ1θ2θ3]TR3是未知常数向量,Φ(x,x˙)=[Φ1(x,x˙)Φ2(x,x˙)Φ3(x,x˙)]T∈R3\Phi(x,\dot{x}) = [\Phi _1(x,\dot{x}) \quad \Phi _2(x,\dot{x}) \quad \Phi _3(x,\dot{x})]^T \in \mathbb{R}^3Φ(x,x˙)=[Φ1(x,x˙)Φ2(x,x˙)Φ3(x,x˙)]TR3为已知的有节基函数,θTΦ(x,x˙)\theta ^T \Phi(x,\dot{x})θTΦ(x,x˙)代表系统的结构匹配不确定性。

选取状态变量x1=x,x2=x˙x_1=x,x_2=\dot{x}x1=x,x2=x˙,则有:

{x˙1=x2x˙2=−θTΦ(x,x˙)+u\begin{cases} \dot{x}_1=x_2 \\ \dot{x}_2=-\theta ^T \Phi(x,\dot{x})+u \end{cases}{x˙1=x2x˙2=θTΦ(x,x˙)+u

设计如下控制器:

u=−(λ+1)x˙−λx+θ^TΦ(x,x˙)u=- (\lambda+1) \dot{x}-\lambda x +\hat{\theta}^T \Phi(x,\dot{x})u=(λ+1)x˙λx+θ^TΦ(x,x˙)

=−(λ+1)x2−λx1+θ^TΦ(x1,x2)=- (\lambda+1) x_2-\lambda x_1 +\hat{\theta}^T \Phi(x_1,x_2)=(λ+1)x2λx1+θ^TΦ(x1,x2)

其中θ^\hat{\theta}θ^是参数θ\thetaθ的估计值,λ\lambdaλ为控制器输入参数且应该大于等于0。

接下来设计估计参数θ^\hat{\theta}θ^的更新率,这里结合LyapunovLyapunovLyapunov稳定性进行设计。假设参数估计的误差θ~=θ^−θ\tilde{\theta}=\hat{\theta}-\thetaθ~=θ^θ,因为θ\thetaθ为常数,所以θ~˙=θ^˙\dot{ \tilde{\theta} } = \dot{\hat{\theta}}θ~˙=θ^˙,定义LyapunovLyapunovLyapunov 函数:

V(x1,x2,θ~)=12(λx1+x2)2+12θ~Tθ~V(x_1,x_2,\tilde{\theta})=\frac{1}{2} (\lambda x_1+x_2 )^2+\frac{1}{2}\tilde{\theta}^T \tilde{\theta} V(x1,x2,θ~)=21(λx1+x2)2+21θ~Tθ~

求导:

V˙(x1,x2,θ~)=(λx1+x2)(λx˙1+x˙2)+θ~Tθ^˙\dot{V}(x_1,x_2,\tilde{\theta})=(\lambda x_1 +x_2)(\lambda \dot{x}_1 +\dot{x}_2)+\tilde{\theta}^T\dot{\hat{\theta}}V˙(x1,x2,θ~)=(λx1+x2)(λx˙1+x˙2)+θ~Tθ^˙

=(λx1+x2)(λx2−θTΦ(x1,x2)+u)+θ~Tθ^˙=(\lambda x_1 +x_2)(\lambda x_2 -\theta ^T \Phi(x_1,x_2)+u)+\tilde{\theta}^T\dot{\hat{\theta}}=(λx1+x2)(λx2θTΦ(x1,x2)+u)+θ~Tθ^˙

=(λx1+x2)(λx2−θTΦ(x1,x2)−(λ+1)x2−λx1+θ^TΦ(x1,x2))+θ~Tθ^˙=(\lambda x_1 + x_2 )(\lambda x_2 - \theta ^T\Phi(x_1,x_2)- (\lambda+1) x_2-\lambda x_1 +\hat{\theta}^T \Phi(x_1,x_2))+\tilde{\theta}^T\dot{\hat{\theta}}=(λx1+x2)(λx2θTΦ(x1,x2)(λ+1)x2λx1+θ^TΦ(x1,x2))+θ~Tθ^˙

=−(λx1+x2)2+(λx1+x2)θ~TΦ(x1,x2)+θ~Tθ^˙= -(\lambda x_1 +x_2)^2 + (\lambda x_1 +x_2) \tilde{\theta}^T \Phi(x_1,x_2)+\tilde{\theta}^T\dot{\hat{\theta}}=(λx1+x2)2+(λx1+x2)θ~TΦ(x1,x2)+θ~Tθ^˙

=−(λx1+x2)2+θ~T((λx1+x2)Φ(x1,x2)+θ^˙)=-(\lambda x_1 +x_2)^2 +\tilde{\theta}^T ((\lambda x_1 +x_2)\Phi (x_1,x_2)+\dot{\hat{\theta}} )=(λx1+x2)2+θ~T((λx1+x2)Φ(x1,x2)+θ^˙)

LyapunovLyapunovLyapunov理论:V˙≤−ρV+C\dot{V}\leq -\rho V +CV˙ρV+CV→C2ρV \rightarrow \sqrt{\frac{C}{2 \rho}}V2ρC,为了达到系统的稳定,设计θ^\hat{\theta }θ^的自适应更新率为:

θ^˙=−(λx1+x2)Φ(x1,x2)−kθ^\dot{\hat{\theta}} =-(\lambda x_1 +x_2)\Phi (x_1,x_2) - k\hat{\theta} θ^˙=(λx1+x2)Φ(x1,x2)kθ^

其中kkk为自适应率输入参数,将θ^\hat{\theta }θ^的更新率带入则有:

V˙(x1,x2,θ~)=−(λx1+x2)2−kθ~Tθ^\dot{V}(x_1,x_2,\tilde{\theta})=-(\lambda x_1 +x_2)^2-k\tilde{\theta}^T\hat{\theta}V˙(x1,x2,θ~)=(λx1+x2)2kθ~Tθ^

=−(λx1+x2)2−kθ~T(θ~+θ)=-(\lambda x_1 +x_2)^2-k\tilde{\theta}^T(\tilde{\theta}+\theta)=(λx1+x2)2kθ~T(θ~+θ)

=−(λx1+x2)2−kθ~Tθ~−kθ~Tθ= -(\lambda x_1 + x_2)^2 - k\tilde{\theta}^T \tilde{\theta} - k\tilde{\theta} ^T \theta=(λx1+x2)2kθ~Tθ~kθ~Tθ

≤−(λx1+x2)2−kθ~Tθ~+k2θ~Tθ~+k2θTθ\leq -(\lambda x_1 + x_2)^2 - k\tilde{\theta}^T \tilde{\theta} +\frac{k}{2}\tilde{\theta}^T\tilde{\theta}+\frac{k}{2}\theta ^T \theta(λx1+x2)2kθ~Tθ~+2kθ~Tθ~+2kθTθ

≤−(λx1+x2)2−k2θ~Tθ~+k2θTθ\leq -(\lambda x_1 + x_2)^2 - \frac{k}{2}\tilde{\theta}^T \tilde{\theta} + \frac{k}{2}\theta ^T \theta(λx1+x2)22kθ~Tθ~+2kθTθ

由于θ\thetaθ为常数,所以按照以上方式设计的控制器uuu和自适应率θ^\hat \thetaθ^满足LyapunovLyapunovLyapunov稳定性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值