Digital IIR Filter Design using Bilinear Transformation in MATLAB
@INPROCEEDINGS{9256625,
author={Getu, Beza Negash},
booktitle={2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI)},
title={Digital IIR Filter Design using Bilinear Transformation in MATLAB},
year={2020},
volume={},
number={},
pages={1-6},
keywords={Digital filters;IIR filters;Band-pass filters;Chebyshev approximation;Passband;Finite impulse response filters;Matlab;Bilinear transformation;s-to-z mapping;analog filter;digital filter;IIR filter;magnitude response},
doi={10.1109/CCCI49893.2020.9256625}}
-
引言:
-
数字滤波器在现代电子和通信设备中广泛应用,IIR滤波器因其计算效率高(相比FIR滤波器阶数更低)而成为重要选择。
-
IIR滤波器设计通常基于模拟原型滤波器,通过双线性变换转换为数字滤波器,以避免频率混叠问题。
-
-
双线性变换原理:
-
双线性变换通过将s平面映射到z平面(公式:
),确保稳定性和频率特性保留。
-
频率预畸变(pre-warping)用于校正数字与模拟频率之间的非线性关系。
-
-
滤波器设计步骤:
-
步骤1:设定数字滤波器指标(通带截止频率
、阻带截止频率
、通带波纹
、阻带衰减
)。
-
步骤2:将数字指标转换为模拟指标(通过预畸变),设计模拟原型滤波器(如Butterworth、Chebyshev或Elliptic)。
-
步骤3:应用双线性变换将模拟滤波器转换为数字滤波器。
-
-
滤波器类型与MATLAB仿真:
-
Butterworth滤波器:通带和阻带响应平坦,但滚降较慢,需更高阶数(例如24阶)满足指标。
-
Chebyshev-I滤波器:通带等波纹,阻带单调,阶数较低(例如10阶)。
-
Chebyshev-II滤波器:阻带等波纹,通带单调,阶数与Chebyshev-I相同。
-
Elliptic滤波器:通带和阻带均为等波纹,阶数最低(例如6阶),但波纹可能影响信号质量。
-
-
其他频率选择性滤波器:
-
通过频率变换(如低通到带通),设计带通滤波器。Butterworth带通滤波器需20阶,而Elliptic仅需10阶。
-
-
实现复杂度:
-
直接II型结构(Direct Form II)用于实现滤波器,Butterworth因阶数高需更多乘法器、加法器和延迟单元,而Elliptic实现成本最低(见表1)。
-
-
结论:
-
双线性变换是设计IIR数字滤波器的有效方法,Elliptic滤波器在阶数和计算效率上最优,但需权衡波纹影响。
-
频率选择性滤波器可通过模拟域或数字域变换实现,MATLAB提供了便捷的设计工具。
-
创新点:
-
详细展示了从模拟原型到数字滤波器的完整设计流程,结合MATLAB仿真验证性能。
-
对比不同滤波器类型的阶数、波纹特性和实现成本,为实际应用提供选型依据。