自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

原创 【菜狗每日记录】启发式算法、傅里叶变换、AC-DTC、Xmeans—20250909

本文介绍了四种算法:1)启发式算法(如遗传算法、蚁群算法),通过经验规则解决NP难问题;2)FFT快速傅里叶变换,将信号分解为频率成分进行分析;3)AC-DTC层次聚类算法,自动确定最佳聚类数量;4)X-means自适应K-means算法,通过BIC准则动态调整聚类数。这些算法分别应用于优化求解、信号处理、无监督学习等领域,具有自适应、高效等特点。

2025-09-09 10:36:42 932

原创 【菜狗每日记录】深度轨迹聚类算法、GRU门控神经网络—20250909

本文提出一种基于序列到序列自动编码器模型的深度轨迹聚类方法DTC。该方法首先将轨迹数据转换为网格序列,利用GRU网络构建Seq2Seq自编码器进行轨迹特征提取;然后联合优化轨迹向量表示和聚类中心,通过双向学习提高聚类质量。相比传统点匹配方法,DTC考虑了轨迹的时空连续性,在真实城市交通数据中展现出更好的聚类效果。关键技术包括:轨迹网格化表示、带空间约束的自编码器预训练、以及表示学习与聚类中心的联合优化机制。

2025-09-09 10:31:26 972

原创 【菜狗学聚类】基于 Lyft level-5 的大型汽车跟踪数据集——20250902

研究人类驾驶员在跟随自动驾驶汽车 (AV) 与人类驾驶车辆 (HV) 时的不同反应对于混合交通流至关重要。该数据集包含从开放的 Lyft 5 级数据集中提取和增强的两类汽车跟随数据,即 HV-follow-AV (H-A) 和 HV-follow-HV (H-H)。6 个 .zarr 轨迹文件夹和 6 个 .csv 制度索引文件的压缩文件(regimes.zip)、2 个 .npz 驱动程序 ID 文件、1 个用于每个时间戳的完整制度的 zip 文件以及一个额外的 readme.md 文件。

2025-09-02 15:12:08 562

原创 【菜狗每日记录】提取Lyft-5预测数据的跟驰车辆轨迹数据、终端输出——20250902

如果是 HV (人工驾驶车),直接从数据集中读取。稳定高/低 → 根据数据分布的分位数(80% 以上算高,20% 以下算低,避免固定数值)在同一时间片对 v/a/T/Δv 的趋势组合成一个多变量动作阶段 Sn′。(跟驰状态),每一列是该状态在这个 case_id 中的持续时间(秒)。(对应到 zarr 数据中的一对 HV-AV/HV-HV)。切换到其他 TTY 终端,可能还能看到之前的会话。,你可以对照来取出该 case 的轨迹序列。,这样既能看到实时输出,又能自动保存到文件。

2025-09-02 15:09:44 730

原创 【菜狗学聚类】聚类的一些评估指标——20250901

摘要:本文介绍了四种常用的聚类评估指标:1)调节后的兰德系数(ARI),取值范围[-1,1],衡量聚类与真实标签的重叠程度;2)标准互信息(NMI),取值范围[0,1],反映聚类结果与真实标签的信息共享量;3)同质性、完整性和V-measure,分别评估聚类结果的纯度和完整性,V-measure是其调和平均;4)Fowlkes-Mallows分数(FMI),范围[0,1],是精度和召回的几何平均。所有指标值越大表示聚类效果越好,适用于不同场景的聚类质量评估。

2025-09-01 16:07:14 763

原创 【菜狗每日记录】VSCode远程连接多个账号、创建环境

在连接的时候尝试,按住F1,输入connect to host,能够选择已经配置的主机或者新添加。起初认为是免密登录导致新的账号也用了原来的密码,所以在.ssh/config文件里面把账号修改为了另一个账号强制修改密码。但是还是连不上。这说明 VSCode 在尝试通过连接远程xxxxx时被拒绝了,甚至在安装远程 server 的过程中管道也中断了。这里跟账号免密/输密码没关系,本质是。之后在本地cmd试了几次,发现 -p 修改端口号能够连接上。

2025-08-29 10:44:18 426

原创 【菜狗学三维重建】TSDF三维重建隐式表达详细解释——20250413

三维重建技术通过二维图像序列构建三维模型,应用于原型设计、虚拟现实、自动驾驶等领域。传统方法依赖激光雷达或多视角图像处理,而NeuralRecon提出端到端神经网络方案,直接输入视频序列输出三维模型。其核心流程包括关键帧选择、片段重建和全局合成,采用TSDF(带符号距离函数)增量式更新三维结构。该方法通过特征投影、片段合并和由粗到细的分层优化策略,避免传统方法中的误差累积问题。代码实现涉及数据处理、模型构建和TSDF计算等模块,使用配置文件管理参数。该技术降低了设备成本,提高了重建效率,为三维建模提供了新思

2025-08-27 21:47:42 933

原创 【菜狗每日记录】A*算法、LightGBM、随机森林、XGBoost——20250827

LightGBM = 一个快、轻、省内存的“聪明决策树团队”,特别擅长在大数据下快速找到规律。常用于:风险预测、推荐系统、点击率预估、交通行为建模(比如预测驾驶风格、碰撞风险)等等。

2025-08-27 21:44:10 1180

原创 【菜狗学聚类】时序数据聚类算法和相关论文

时间序列数据具有高维性、顺序性和动态性等特点,可分为单变量/多变量、规则/不规则采样等多种类型。传统分析方法包括相似性度量(如DTW、欧氏距离)和聚类算法(K-means、层次聚类等)。论文研究提出改进方法:1)Reservoir Computing将时间序列转换为向量表示;2)结合注意力机制和LSTM的动作模式识别框架。研究表明,针对不同数据类型需采用适配的建模策略,频域特征和深度学习表示能有效提升分析效果。未来可探索自适应阈值、多变量依赖关系等方向优化时序数据分析。

2025-08-18 15:40:44 855

原创 【菜狗处理脏数据】对很多个不同时间序列数据的文件聚类—20250722

本文提出了一种基于驾驶行为数据的用户聚类方法。首先将原始数据文件(每个文件代表一个用户)摊平为一行,汇总成CSV文件;然后对列表形式的数据进行展开处理,转换为数值型特征;最后使用KMeans算法进行聚类分析。通过PCA和t-SNE两种降维方法可视化聚类结果,并用轮廓系数评估聚类质量。实验结果显示,该方法能有效区分不同用户的行为模式,但存在未充分考虑时间相关性和特征相关性的局限性。该研究为驾驶行为分析提供了新的技术思路。

2025-07-22 21:16:43 291

原创 【菜狗学聚类】时间序列聚类主要方法—20250722

时间序列聚类方法综述:主要方法包括基于模型、特征和形状三类,各具优缺点。关键挑战包括时间序列表示(PAA、APCA、SAX、DFT等降维技术)、距离度量(欧式距离、DTW、MINDIST)、原型选择(中位序列和平均序列)和聚类算法(K-Medoids、K-Means、层次聚类)。PyPOTS工具包为时间序列聚类提供专门支持,能处理缺失数据、支持多种距离度量,并具备自动化和可扩展性优势。该领域仍需解决高维数据处理、计算效率和时间信息保留等核心问题。

2025-07-22 15:00:34 796

原创 【菜狗的记录】NuScenes数据集总线数据—20250714

NuScenes数据集是由Motional团队开发的大规模自动驾驶数据集,包含1000个在波士顿和新加坡采集的驾驶场景,涵盖复杂交通状况。数据集提供多传感器数据(6摄像头、1激光雷达、5雷达等)和精确标注,包括1.4M个3D边界框和激光雷达语义分割标签。特别分析了CAN总线数据,包含8种消息类型(如IMU、转向角、车速等),采样频率从2Hz到100Hz不等。通过API可获取并可视化总线数据,如比较车轮速度与车速的差异。数据集还包含车辆行驶路线信息,为自动驾驶研究提供了丰富资源。

2025-07-14 11:46:53 912

原创 【菜狗每日记录】推荐系统发展

本文摘要: 推荐系统发展经历了从早期提问式到协同过滤、矩阵分解,再到深度学习模型的演进。知识图谱可通过Virtuoso或Neo4j读取ttl文件。双向循环神经网络(BiRNN)结合正向和反向RNN,在NLP等任务中表现优异。Python可通过requests库实现网页问答功能。

2025-07-13 15:33:34 959

原创 【菜狗的记录】模糊聚类最大树、图神经网络、大模型量化——20250627

本文整理了2025年6月22日至27日的学习笔记,主要内容包括: 模糊聚类最大树算法:介绍模糊关系、模糊矩阵运算及基于最大生成树的聚类方法; 图神经网络基础:涵盖GNN定义、任务分类、核心模型以及与网络嵌入的区别; 深度互学习技术:探讨模型蒸馏和网络互学习策略; 大模型量化技术:针对显存优化提出INT8量化、混合精度训练及多GPU并行方案。笔记从原理到实践应用进行了系统梳理。

2025-06-27 22:12:21 813

原创 【菜狗学大模型】知识图谱和图嵌入相关知识—20250610

知识图谱相关知识,图嵌入、词嵌入还有之前看到的CLIP模型简单介绍。

2025-06-10 14:26:15 882

原创 【菜狗学大模型】LangChain检索增强生成-构建一个简单的基于文本数据源的问答应用程序—20250609

本文详细介绍了基于LangChain框架构建RAG(检索增强生成)应用的完整流程。主要包括:1) 索引组件的数据加载、分割和存储;2) 检索生成组件的查询处理和回答生成。具体实现步骤包括:从MongoDB加载文档数据,采用多种分割策略处理文本,使用嵌入模型生成向量表示,存储到Milvus向量数据库,最后通过提示模板调用大模型生成回答。文中还提供了代码示例,展示了文档处理、向量检索和问答生成的关键实现细节,以及命令行操作指南。该流程适用于处理PDF、CSV等多种格式文档的智能问答场景。

2025-06-09 15:32:42 811

原创 【菜狗学深度学习】Transformer直观理解存档-20250609

Transformer简单介绍。

2025-06-09 15:14:02 510

原创 【菜狗学三维重建】Transformer-跟李沐学AI+3Blue1Brown直观理解——20250601

transformer直观理解

2025-06-01 14:49:48 1036

原创 【菜狗学计算机】和电脑对话!程序是怎么跑起来的?CPU是什么?——20250509

关于计算机运行的知识,程序是怎么跑起来的。

2025-05-09 20:48:40 1068

原创 【菜狗学大模型】RAG检索增强生成-搭建知识库并进行检索——20250430

大模型的RAG增强检索生成的简单实现。

2025-04-30 15:23:32 692

原创 【菜狗学三维重建】Slam对极几何实战—从两张未知相机内参的图片计算出来相机Rt——20250413

对极几何实战

2025-04-13 20:09:25 763

原创 【菜狗学三维重建】透视投影原理、对极几何、视觉里程计、运动恢复结构—计算机视觉相关知识—20250313

计算机视觉、三维重建基础知识

2025-03-13 20:44:42 1069

原创 【菜狗学三维重建】EndoGaussian 评测指标代码metrics.py分析——20250226

体内三维高斯EndoGaussian的评估代码metrics.py解析。

2025-02-26 19:38:16 850

原创 【菜狗学三维重建】图像质量评价指标(PSNR、SSIM、LPIPS、SILog、MSE、RMSE、MAE)——20250221

计算机视觉常用的一些指标,例如PSNR、SSIM、MSE等

2025-02-21 21:19:18 3062

原创 【菜狗学三维重建】卷积神经网络实战-李宏毅2021ML——20250219

李宏毅老师的2021机器学习课程的卷积神经网络作业

2025-02-19 11:09:32 902

转载 【菜狗学三维重建】相机标定:获得相机内参 OpenCV官方文档——20250215

来自opencv官方文档

2025-02-15 17:47:22 317

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除