66——基于三维重建与 Unet 神经网络的隧道掌子面围岩快速分级技术

本文介绍了一种基于三维重建技术和Unet神经网络的隧道掌子面围岩快速分级方法。通过对掌子面图像进行采集、三维建模及高清图像拼接,利用Unet神经网络自动识别并分析围岩节理信息,最终结合岩石力学特性完成围岩分级。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

李赤谋, 吕明, 袁青, 等. 基于三维重建与 Unet 神经网络的隧道掌子面围岩快速分级技术[ J]. 隧道建设(中英文), 2022, 42(1): 33.

本文依托云南文山文麻高速大法郎隧道,针对该 隧道某施工段Ⅳ、Ⅴ级围岩,利用数码相机进行了图像 采集,通过三维点云技术获得了掌子面及周边硐壁的三维模型,基于该模型进行了掌子面高清图像拼接,再基于 Unet 神经网络对掌子面节理信息进行迹线识别及分析,最后利用分析结果进行了掌子面围岩完整性分析,结合围岩单轴饱和抗压强度及其他地勘信息对掌子面围岩进行了分级,建立了一种便捷的围岩完整性判别手段和分级方法。

 掌子面围岩节理自动识别及特征分析

1) 训练图像预处理。 现场获取到的照片尺寸较大,如果直接输入神经网络对计算机的显存要求过高。 为了获得合理尺寸的神经网络训练图,将采集的图片 裁剪成大量小尺寸的图片,剔除不含节理线的小尺寸 图片,剩余的作为训练图片; 同时为了增强数据的多 样性,提高训练结果的泛化性,对训练原图和对应的训 练标记图进行扭曲、旋转、翻转操作。

2) Unet 神经网络训练。 收集现场采集的大量照 片,利用其中的 2 000 张硐壁照片进行网络训练。 标 记其中的节理线,输入 Unet 神经网络训练。 训练时将 标记的节理照片按 4 ∶ 1 的比例分成训练集和验证集。 采用自定义损失函数 Dice coefficient 作为损失函数。 当网络训练至设定精度或次数时,停止训练。 某掌子面围岩节理识别效果如图 6 所示。

 3) 节理线骨架化。 利用神经网络已经对节理区域进行了分割识别,而对节理进行分析需要的是节理 单像素组成的线,需要对输出结果进一步处理得到单 像素的节理线,这个过程称为节理骨架化。 本文采用 经典的 Zhang-Suen 算法[18] 进行节理骨架化,骨架化前后的效果对比如图 7 所示。

4) 毛刺剔除及节理线连接。 在进行节理骨架提 取后,形成的骨架会含有许多毛刺,剔除这些毛刺后才 能得到合理的节理线; 由于识别效果有限,属于同一 节理的节理线被分割成多段,影响后续分析,因此还需 要对同属于一条节理的多段迹线进行连接。 连接过程 由节理线端点寻找和节理线连接 2 个步骤组成,通过 计算机编程自动化实现。 完成上述流程后,节理识别 效果如图 8 所示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值