【错误】训练过程中loss变为nan

排查方法:在backward()前面加上torch.autograd.set_detect_anomaly(True)

torch.autograd.set_detect_anomaly(True)
loss.backward()

我报错的原因:输入网络的值为NAN,或存在极端值(过大/过小)

排查方法:打出torch最大值和最小值

print("x_path", x_path.min(), x_path.max(), torch.isnan(x_path).any())

三种解决方法:

删除极端值

进行归一化

将极端值赋值(可能会影响学习的准确率)

wsi_bag = torch.nan_to_num(wsi_bag, nan=0.0)
wsi_bag = torch.clamp(wsi_bag, min=0.0, max=1.0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值