E:\Anaconda\envs\yolov8\python.exe E:\pycharm学习文件\yolov8\垃圾分类.py
Ultralytics 8.3.130 Python-3.11.0 torch-2.5.1 CUDA:0 (NVIDIA GeForce RTX 3060 Laptop GPU, 6144MiB)
engine\trainer: agnostic_nms=False, amp=True, augment=False, auto_augment=randaugment, batch=32, bgr=0.0, box=7.5, cache=False, cfg=None, classes=None, close_mosaic=10, cls=0.5, conf=None, copy_paste=0.0, copy_paste_mode=flip, cos_lr=False, cutmix=0.0, data=.yaml, degrees=0.0, deterministic=True, device=0, dfl=1.5, dnn=False, dropout=0.0, dynamic=False, embed=None, epochs=200, erasing=0.4, exist_ok=False, fliplr=0.5, flipud=0.0, format=torchscript, fraction=1.0, freeze=None, half=False, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, imgsz=640, int8=False, iou=0.7, keras=False, kobj=1.0, line_width=None, lr0=0.01, lrf=0.01, mask_ratio=4, max_det=300, mixup=0.0, mode=train, model=yolo11n.pt, momentum=0.937, mosaic=1.0, multi_scale=False, name=train, nbs=64, nms=False, opset=None, optimize=False, optimizer=auto, overlap_mask=True, patience=100, perspective=0.0, plots=True, pose=12.0, pretrained=True, profile=False, project=None, rect=False, resume=False, retina_masks=False, save=True, save_conf=False, save_crop=False, save_dir=runs\detect\train, save_frames=False, save_json=False, save_period=-1, save_txt=False, scale=0.5, seed=0, shear=0.0, show=False, show_boxes=True, show_conf=True, show_labels=True, simplify=True, single_cls=False, source=None, split=val, stream_buffer=False, task=detect, time=None, tracker=botsort.yaml, translate=0.1, val=True, verbose=True, vid_stride=1, visualize=False, warmup_bias_lr=0.1, warmup_epochs=3.0, warmup_momentum=0.8, weight_decay=0.0005, workers=8, workspace=None
Overriding model.yaml nc=80 with nc=4
from n params module arguments
0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
2 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
3 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
4 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
5 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
6 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
8 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
10 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1]
13 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
18 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1]
19 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
20 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
21 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1]
22 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
23 [16, 19, 22] 1 431452 ultralytics.nn.modules.head.Detect [4, [64, 128, 256]]
YOLO11n summary: 181 layers, 2,590,620 parameters, 2,590,604 gradients, 6.4 GFLOPs
Transferred 448/499 items from pretrained weights
Freezing layer 'model.23.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks...
AMP: checks passed
train: Fast image access (ping: 0.10.0 ms, read: 588.9148.2 MB/s, size: 87.3 KB)
train: Scanning E:\pycharm学习文件\yolov8\xun\labels\train.cache... 3784 images, 0 backgrounds, 0 corrupt: 100%|██████████| 3784/3784 [00:00<?, ?it/s]
Ultralytics 8.3.130 Python-3.11.0 torch-2.5.1 CUDA:0 (NVIDIA GeForce RTX 3060 Laptop GPU, 6144MiB)
engine\trainer: agnostic_nms=False, amp=True, augment=False, auto_augment=randaugment, batch=32, bgr=0.0, box=7.5, cache=False, cfg=None, classes=None, close_mosaic=10, cls=0.5, conf=None, copy_paste=0.0, copy_paste_mode=flip, cos_lr=False, cutmix=0.0, data=.yaml, degrees=0.0, deterministic=True, device=0, dfl=1.5, dnn=False, dropout=0.0, dynamic=False, embed=None, epochs=200, erasing=0.4, exist_ok=False, fliplr=0.5, flipud=0.0, format=torchscript, fraction=1.0, freeze=None, half=False, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, imgsz=640, int8=False, iou=0.7, keras=False, kobj=1.0, line_width=None, lr0=0.01, lrf=0.01, mask_ratio=4, max_det=300, mixup=0.0, mode=train, model=yolo11n.pt, momentum=0.937, mosaic=1.0, multi_scale=False, name=train2, nbs=64, nms=False, opset=None, optimize=False, optimizer=auto, overlap_mask=True, patience=100, perspective=0.0, plots=True, pose=12.0, pretrained=True, profile=False, project=None, rect=False, resume=False, retina_masks=False, save=True, save_conf=False, save_crop=False, save_dir=runs\detect\train2, save_frames=False, save_json=False, save_period=-1, save_txt=False, scale=0.5, seed=0, shear=0.0, show=False, show_boxes=True, show_conf=True, show_labels=True, simplify=True, single_cls=False, source=None, split=val, stream_buffer=False, task=detect, time=None, tracker=botsort.yaml, translate=0.1, val=True, verbose=True, vid_stride=1, visualize=False, warmup_bias_lr=0.1, warmup_epochs=3.0, warmup_momentum=0.8, weight_decay=0.0005, workers=8, workspace=None
Overriding model.yaml nc=80 with nc=4
from n params module arguments
0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
2 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
3 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
4 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
5 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
6 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
8 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
10 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1]
13 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
18 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1]
19 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
20 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
21 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1]
22 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
23 [16, 19, 22] 1 431452 ultralytics.nn.modules.head.Detect [4, [64, 128, 256]]
YOLO11n summary: 181 layers, 2,590,620 parameters, 2,590,604 gradients, 6.4 GFLOPs
Transferred 448/499 items from pretrained weights
Freezing layer 'model.23.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks...
AMP: checks passed
train: Fast image access (ping: 0.10.0 ms, read: 631.5116.5 MB/s, size: 87.3 KB)
train: Scanning E:\pycharm学习文件\yolov8\xun\labels\train.cache... 3784 images, 0 backgrounds, 0 corrupt: 100%|██████████| 3784/3784 [00:00<?, ?it/s]
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "E:\Anaconda\envs\yolov8\Lib\multiprocessing\spawn.py", line 120, in spawn_main
exitcode = _main(fd, parent_sentinel)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Anaconda\envs\yolov8\Lib\multiprocessing\spawn.py", line 129, in _main
prepare(preparation_data)
File "E:\Anaconda\envs\yolov8\Lib\multiprocessing\spawn.py", line 240, in prepare
_fixup_main_from_path(data['init_main_from_path'])
File "E:\Anaconda\envs\yolov8\Lib\multiprocessing\spawn.py", line 291, in _fixup_main_from_path
main_content = runpy.run_path(main_path,
^^^^^^^^^^^^^^^^^^^^^^^^^
File "<frozen runpy>", line 291, in run_path
File "<frozen runpy>", line 98, in _run_module_code
File "<frozen runpy>", line 88, in _run_code
File "E:\pycharm学习文件\yolov8\垃圾分类.py", line 3, in <module>
a1.train(
File "E:\Anaconda\envs\yolov8\Lib\site-packages\ultralytics\engine\model.py", line 793, in train
self.trainer.train()
File "E:\Anaconda\envs\yolov8\Lib\site-packages\ultralytics\engine\trainer.py", line 212, in train
self._do_train(world_size)
File "E:\Anaconda\envs\yolov8\Lib\site-packages\ultralytics\engine\trainer.py", line 328, in _do_train
self._setup_train(world_size)
File "E:\Anaconda\envs\yolov8\Lib\site-packages\ultralytics\engine\trainer.py", line 292, in _setup_train
self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=LOCAL_RANK, mode="train")
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Anaconda\envs\yolov8\Lib\site-packages\ultralytics\models\yolo\detect\train.py", line 88, in get_dataloader
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # return dataloader
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Anaconda\envs\yolov8\Lib\site-packages\ultralytics\data\build.py", line 169, in build_dataloader
return InfiniteDataLoader(
^^^^^^^^^^^^^^^^^^^
File "E:\Anaconda\envs\yolov8\Lib\site-packages\ultralytics\data\build.py", line 50, in __init__
self.iterator = super().__iter__()
^^^^^^^^^^^^^^^^^^
File "E:\Anaconda\envs\yolov8\Lib\site-packages\torch\utils\data\dataloader.py", line 484, in __iter__
return self._get_iterator()
^^^^^^^^^^^^^^^^^^^^
File "E:\Anaconda\envs\yolov8\Lib\site-packages\torch\utils\data\dataloader.py", line 415, in _get_iterator
return _MultiProcessingDataLoaderIter(self)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Anaconda\envs\yolov8\Lib\site-packages\torch\utils\data\dataloader.py", line 1138, in __init__
w.start()
File "E:\Anaconda\envs\yolov8\Lib\multiprocessing\process.py", line 121, in start
self._popen = self._Popen(self)
^^^^^^^^^^^^^^^^^
File "E:\Anaconda\envs\yolov8\Lib\multiprocessing\context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Anaconda\envs\yolov8\Lib\multiprocessing\context.py", line 336, in _Popen
return Popen(process_obj)
^^^^^^^^^^^^^^^^^^
File "E:\Anaconda\envs\yolov8\Lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__
prep_data = spawn.get_preparation_data(process_obj._name)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Anaconda\envs\yolov8\Lib\multiprocessing\spawn.py", line 158, in get_preparation_data
_check_not_importing_main()
File "E:\Anaconda\envs\yolov8\Lib\multiprocessing\spawn.py", line 138, in _check_not_importing_main
raise RuntimeError('''
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if __name__ == '__main__':
freeze_support()
...
The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.什么原因
最新发布