为什么大厂都在用LangChain?一文拆解大模型应用主流开发框架!

本文主要从Why、What、How的角度,拆解目前主流的大模型应用开发框架LangChain,之后给到一个带RAG能力的聊天机器人(Chatbot)项目,来感受下LangChain在大模型应用开发方面的实战效果。

你将获得什么?

  • 开发一个AI大模型应用需要考虑哪些内容?
  • LangChain的核心架构都有哪些?
  • RAG的核心思路是什么?
  • 实战:如何5分钟实现一个极简智能聊天机器人Chatbot?

一、Why:为啥会有LangChain

假如从OpenAI 的API开始构建大模型应用的话,那么就得需要考虑这些问题。

  • Prompt 管理:不同的场景需要手写不同的提示词(Prompt**),**还要维护多个 prompt 的版本和结构,很容易混乱。
  • **调用逻辑的组织:**如果你想让模型先问用户问题,然后再去查资料,再回答——你得自己写一整套逻辑流程。
  • **多模型集成:**假如你不想用OpenAI的大模型,想尝试下HuggingFace上的其他大模型,就得需要自己封装和管理它们的接口。
  • **与外部工具对接:**想要模型查数据库、搜索引擎、文件系统?你要自己写代码去连接、格式化、处理这些数据。
  • **内存管理(聊天上下文):**比如:让 AI 记住用户之前说过什么,你要自己存储这些对话记录,并加到 prompt 里。
  • **调试 & 追踪:**如果模型表现不对,你很难知道是哪一步出了问题。没有自动化的 trace 系统。

现在,有了LangChain,你可以不用特别关注那些底层的工作,专注在你的业务即可。比如你想基于LLM开发一个问答系统,几行代码就可以完成最内核的功能:

from langchain_community.chat_models import ChatOllama
from langchain_core.messages import HumanMessage

# 初始化模型
model = ChatOllama(
    model="qwen2.5:1.5b",
    base_url="http://localhost:11434"# Ollama 服务地址
)

# 发送请求
response = model.invoke([
    HumanMessage(content="用中文写一首关于秋天的短诗")
])

print(response.content)

对,就是这么简洁。

二、What:LangChain框架拆解

官网的定义是,LangChain是一个用于开发由大型语言模型 (LLMs) 驱动的应用程序的框架。想要理解LangChain的封装逻辑,就得先理解LLM的技术堆栈思路。

2.1 LLM技术栈设计思路

当你想开发一款大模型应用的时候,直接使用其已经封装好的组件就可以。甚至针对常规的应用流程,它利用链(LangChain中Chain的由来)这个概念已经内置标准化方案了。

这里我们从新兴的大语言模型(LLM)技术栈的角度来看看为何它的理念这么受欢迎。

img

LLM技术栈主要由四个主要部分组成:

数据预处理(data preprocessing pipeline):主要包括了数据源连接、数据转化、下游连接器(如向量数据库),特别是对于繁杂的数据源,如数千个PDF、PPTX、聊天记录、抓取的HTML等,这里需要大量的数据提取、清理、转换工作,这点上跟大数据分析任务的前期步骤很类似,不同的是大模型的数据处理可能会用到OCR模型、Python脚本和正则表达式等方式,并以API方式向外部提供JSON数据,以便嵌入终端和存储在向量数据库中。

嵌入与向量存储(embeddings +vector store ):以往嵌入主要用于如文档聚类之类的特定任务,新的架构中,直接将文档及其嵌入存储在向量数据库中,可以通过LLM端点实现关键的交互模式。直接存储原始嵌入,意味着数据可以以其自然格式存储,从而实现更快的处理时间和更高效的数据检索。

LLM 终端(LLM endpoints):LLM终端负责管理模型的资源,包括内存和计算资源,并提供可扩展和容错的接口,用于向下游应用程序提供LLM输出。

LLM 编程框架(LLM programming framework):LLM编程框架提供了一套工具和抽象,用于使用语言模型构建应用程序。在现代技术栈中出现了各种类型的组件,包括:LLM提供商、嵌入模型、向量存储、文档加载器、其他外部工具(谷歌搜索等),这些框架的一个重要功能是协调各种组件。

2.2 LangChain框架核心模块

langchain-core:聊天模型和其他组件的基础抽象。

Integration packages:负责维护不同厂家的大模型,由轻量级的包组成,例如 langchain-openai、langchain-anthropic 等。

langchain:构成应用程序认知架构的链、代理和检索策略。

langchain-community:由社区维护的第三方集成工具。

langgraph:编排框架,用于将 LangChain 组件组合成具有持久化、流式处理和其他关键功能的生产就绪型应用程序。

完整的框架如:

img

这里补充框架中的两个组成:

  • LangGraph:是一个基于 LangChain 的扩展库,用于构建有状态、多角色的智能体(Agents)应用。它通过将任务流程建模为状态图(StateGraph),实现对复杂任务的精细控制和管理。
  • LangSmith:通俗一点来说,LangSmith 是一个用于开发、调试、测试和监控基于大语言模型(LLM)应用的平台,它有点像你写 LLM 应用时的 “全能开发调试仪表盘”。

三、How:基于LangChain开发带RAG能力的ChatBot项目

3.1 项目效果

先直接看下项目效果。

img

注:用户在位置1进行输入,在位置2 Jupyter的Cell底部,可以看到大模型回复的结果。

3.2 关键步骤解析

项目技术开发环境:LangChain+Ollama+Qwen2.5+Jupyter

1. 基础构建

可以看到这里主要引用了LangChain框架中的langchain_core、langchain_community,并进行了模型初始化和文件的加载处理。

import os
from typing import List, Optional
from langchain_community.chat_models import ChatOllama
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.document_loaders import PyPDFLoader, TextLoader

# 配置常量
DEFAULT_MODEL = "qwen2.5:1.5b"
OLLAMA_BASE_URL = "http://localhost:11434"

# 初始化模型
def init_model(model_name: str = DEFAULT_MODEL) -> ChatOllama:
    return ChatOllama(
        model=model_name,
        base_url=OLLAMA_BASE_URL,
        temperature=0.7,
        num_ctx=4096,
        stream=True,
        stop=["<|im_end|>"]  # 防止模型无限生成
    )

# 加载文档(支持PDF/TXT)
def load_documents(file_path: str) -> Optional[List]:
    ifnot os.path.exists(file_path):
        print(f"⚠️ 文件不存在: {file_path}")
        returnNone
    
    try:
        if file_path.endswith(".pdf"):
            loader = PyPDFLoader(file_path)
        elif file_path.endswith(".txt"):
            loader = TextLoader(file_path)
        else:
            print("❌ 不支持的文件格式(仅支持PDF/TXT)")
            returnNone
        
        return loader.load()
    except Exception as e:
        print(f"❌ 文档加载失败: {str(e)}")
        returnNone

2. 构建智能链

这一步是整个应用的核心。在这一步中完成应用的,文件解析、向量化、查询检索。并结合用户输入完成对LLM的交互。

def build_chain(model: ChatOllama, documents: Optional[List] = None):
    # ===== 提示模板设计 =====
    base_prompt = ChatPromptTemplate.from_messages([
        ("system", "你是{persona},请用{language}回答。对话历史:{history}"),
        ("human", "{input}")
    ])
    
    doc_prompt = ChatPromptTemplate.from_messages([
        ("system", """
        根据以下上下文和对话历史回答问题:
        ---上下文---
        {context}
        ---历史记录---
        {history}
        请用{language}以{persona}的身份回答:
        """),
        ("human", "{input}")
    ])
    
    # ===== 链式逻辑 =====
    if documents:
        # 文档处理流程
        embeddings = OllamaEmbeddings(model="nomic-embed-text")
        splits = RecursiveCharacterTextSplitter(
            chunk_size=1000, 
            chunk_overlap=200
        ).split_documents(documents)
        
        vectorstore = FAISS.from_documents(splits, embeddings)
        retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
        
        chain = (
            RunnablePassthrough.assign(
                context=lambda x: "\n".join(
                    f"[来源{i+1}]: {doc.page_content}"
                    for i, doc in enumerate(retriever.get_relevant_documents(x["input"]))
                ),
                persona=lambda _: "专业AI助手",
                language=lambda _: "中文",
                history=lambda x: "\n".join(
                    f"{msg.type}: {msg.content}"
                    for msg in x.get("history", [])
                )
            )
            | doc_prompt
            | model
            | StrOutputParser()
        )
    else:
        # 基础对话流程
        chain = (
            RunnablePassthrough.assign(
                persona=lambda _: "友好AI伙伴",
                language=lambda _: "中文",
                history=lambda x: "\n".join(
                    f"{msg.type}: {msg.content}"
                    for msg in x.get("history", [])
                )
            )
            | base_prompt
            | model
            | StrOutputParser()
        )
    
    return chain

3.构建交互式聊天框架

这一步主要构建起用于与大模型聊天的用户界面。可以看到从用户输入到LLM相应,以及保留最近10轮的对话上下文信息。

def chat(model_name: str = DEFAULT_MODEL, file_path: Optional[str] = None):
    # 初始化
    model = init_model(model_name)
    documents = load_documents(file_path) if file_path elseNone
    chain = build_chain(model, documents)
    history = []
    
    print(f"\n🚀 已启动 {model_name} 聊天机器人({'文档模式' if documents else '纯对话模式'})")
    print("输入 'exit' 退出 | 'reset' 清空历史 | 'switch' 切换模型\n")
    
    whileTrue:
        try:
            # 用户输入
            user_input = input("👤 你: ")
            if user_input.lower() == 'exit':
                break
            elif user_input.lower() == 'reset':
                history = []
                print("🔄 历史已清空")
                continue
            elif user_input.lower() == 'switch':
                new_model = input(f"当前模型: {model_name} → 输入新模型名(如 deepseek-r1:7b): ")
                model_name = new_model.strip()
                model = init_model(model_name)
                chain = build_chain(model, documents)
                print(f"🔄 已切换至模型: {model_name}")
                continue
            
            # 流式输出
            print("\n🤖 AI: ", end="", flush=True)
            full_response = ""
            for chunk in chain.stream({"input": user_input, "history": history}):
                print(chunk, end="", flush=True)
                full_response += chunk
            
            # 更新历史(限制最大长度)
            history.extend([
                HumanMessage(content=user_input),
                AIMessage(content=full_response)
            ])
            history = history[-10:]  # 保留最近10轮对话
            
            print("\n" + "─" * 50 + "\n")
            
        except KeyboardInterrupt:
            print("\n⏹️ 对话已终止")
            break
        except Exception as e:
            print(f"\n❌ 错误: {str(e)}")

4.运行应用程序

这个应用不仅支持纯LLM对话的,还支持RAG的方式进行对话。

if __name__ == "__main__":
    # 示例:带PDF文档的聊天
    # chat(file_path="knowledge.pdf")
    
    # 纯对话模式
    chat()

读者福利:知道你对AI大模型感兴趣,便准备了这套对AI大模型学习资料

对于0基础小白入门:

如果你是零基础小白,想快速入门AI大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:大模型从零基础到进阶的学习路线、100套AI大模型商业化落地方案,大模型全套视频教程。带你从零基础系统性的学好AI大模型!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值