
AI大模型
文章平均质量分 94
大模型微调专家
AI大模型就是程序员最大的风口!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【LLM】多模态LLM综述MultiModal Large Language Models
本文综述了多模态大语言模型(MM-LLM)的最新进展,总结了其五大发展趋势:(1)从特定模态理解扩展到任意模态转换;(2)训练流程从预训练、监督微调(SFT)到强化学习人类反馈(RLHF)的逐步优化;(3)多模态扩展;(4)采用更高质量训练数据;(5)模型架构简化(如从Q-Former转向更高效的MLP结构)。文章还分析了关键技术点:高分辨率编码器带来更多视觉信息但增加计算负担,SFT数据质量对性能的关键影响,以及VILA模型揭示的PEFT对齐、交错数据训练等新发现。最后对比了BLIP-2中Q-Former原创 2025-07-31 09:30:00 · 1215 阅读 · 0 评论 -
Time-LLM:为时间序列预测重新编程LLM 探索Time-LLM的架构,并在Python中将其应用于预测项目
本文介绍了Time-LLM框架,该框架通过重新编程大型语言模型(LLM)来实现时间序列预测。Time-LLM不是微调LLM,而是通过补丁化输入序列、重新编程层将时间序列转换为语言任务、提示前缀增强和输出投影等步骤,使LLM能够预测时间序列数据。该方法避免了直接修改LLM,而是利用其强大的泛化能力,将时间序列预测转化为LLM可处理的形式。文章还探讨了如何在预测任务中应用Time-LLM,并与其他模型(如N-BEATS和MLP)进行比较。原创 2025-07-31 09:00:00 · 1468 阅读 · 0 评论 -
Ollama深度探索:AI大模型本地部署的全面教程
本文介绍了在Windows系统下将Safetensors大模型转换为ollama可用的自定义模型的方法。主要内容包括:下载ollama和llama.cpp源码并整合项目结构;安装Python依赖环境;以Chinese-Mistral-7B模型为例,演示如何将多个safetensors文件合并为单个bin文件;使用CMake编译工具对模型进行量化处理,将14G的模型文件压缩至4G左右。文章提供了详细的步骤说明和操作截图,为开发者实现本地大模型部署提供参考,后续还将分享LoRA微调及ollama调用LoRA的经原创 2025-07-30 11:08:47 · 947 阅读 · 0 评论 -
Ollama深度探索:AI大模型本地部署的全面教程
Ollama是一个本地化AI框架,支持大型语言模型(LLMs)的部署、运行和管理。它提供模型下载、更新、删除等管理功能,支持通过Modelfile自定义模型参数,实现隐私安全的本地运行。系统支持多平台安装,包含REST API和编程语言库等高级功能,适用于自然语言处理、内容创作等场景。Ollama通过简化复杂AI模型在本地环境的使用,推动AI技术民主化,特别适合注重数据隐私和离线使用的开发者与用户。原创 2025-07-30 11:06:06 · 682 阅读 · 0 评论 -
Qwen(通义千问)部署量化微调实践
本文介绍了阿里云通义千问(Qwen)大模型的本地部署方法。Qwen是基于Transformer架构的70亿参数大模型,支持多种精度模式。部署步骤包括:安装Python 3.8+和PyTorch 1.12+,克隆代码库并安装依赖项,可选安装flash-attention提升效率。文章详细说明了如何使用Transformers库调用模型,并提供了CPU/GPU不同配置下的代码示例。此外还介绍了模型量化方法(AutoGPTQ和KV cache)和微调流程,包括数据准备格式和全参数微调/LoRA/Q-LoRA等微调原创 2025-07-29 09:30:00 · 1532 阅读 · 0 评论 -
DeepSeek 部署指南 (使用 vLLM 本地部署)
本文介绍了如何使用vLLM在本地部署DeepSeek-R1-Distill-Qwen-7B模型。首先需要安装Python 3.8+环境并验证安装成功。然后通过ModelScope下载模型文件,注意需要15GB以上磁盘空间。推荐使用Python虚拟环境安装vLLM库,以避免包冲突。最后使用vLLM启动推理服务,完成本地大模型部署。整个流程包括环境准备、模型下载、依赖安装和服务启动四个关键步骤。原创 2025-07-29 09:15:00 · 597 阅读 · 0 评论 -
地表最强SGLang部署本地Qwen3-32B大模型--实战教程
本文详细介绍了在本地部署Qwen3-32B大模型的完整流程,重点解决企业环境下"数据不出库"的安全需求。教程包含三个核心步骤:首先通过ModelScope或Huggingface下载模型文件(约20GB),需要2×24GB显存和32GB内存的硬件支持;其次拉取SGLang推理引擎的Docker镜像;最后配置启动参数,包括GPU分配、端口映射等关键设置,并提供完整的Docker运行命令示例。文章特别强调了混合推理模式下的硬件要求,并针对不同下载方式给出了具体代码示例,为需要本地部署大模型的原创 2025-07-28 11:21:38 · 1266 阅读 · 0 评论 -
Qwen3-30B-A3B 本地部署以及全能力测试
本文详细介绍了Qwen3-30B-A3B模型的本地部署与能力测试。该模型是阿里巴巴推出的高效MoE模型,具有30B参数但仅激活3B,在保持高性能的同时降低硬件需求。文章通过LM Studio工具展示了在个人设备上部署的完整流程,并提供了数学推理、逻辑分析等测试案例的提示词。测试结果表明,该模型在计算精度和推理能力上表现优异,适合本地部署应用。文末还提供了在线体验235B旗舰模型的链接,供用户选择不同规模版本体验。原创 2025-07-28 11:18:54 · 865 阅读 · 0 评论 -
【源力觉醒 创作者计划】文心4.5本地化部署全攻略:基于GitCode的DeepSeek、Qwen3.0性能基准测试
本文详细介绍了百度文心4.5大模型的本地化部署指南,基于GitCode平台提供了ERNIE-4.5-0.3B-PT模型的完整部署流程。内容包括模型下载、conda环境配置、Python依赖安装及测试脚本运行等关键步骤。文章还对比了文心4.5与DeepSeek、Qwen3.0在文本理解、逻辑推理和专业知识适配三个维度的性能表现,展示了不同模型的特点优势。部署方案包含可视化界面开发,使用streamlit库实现交互式对话功能,为开发者提供了一套完整的本地化部署解决方案。原创 2025-07-26 09:45:00 · 898 阅读 · 0 评论 -
3天功能开发→3小时:通义灵码2.0+DEEPSEEK实测报告,单元测试生成准确率92%的秘密
随着人工智能技术的迅猛发展,AI 赋能编程成为了必然趋势。通义灵码应运而生,它是阿里巴巴集团在人工智能与编程领域深度探索的结晶。通义灵码旨在借助 AI 的强大能力,为开发者提供更加智能、高效的编程辅助工具。通义灵码 2.0 作为其升级版本,更是在功能和性能上实现了重大突破,成为编程领域的一颗璀璨新星。原创 2025-07-26 09:15:00 · 1525 阅读 · 0 评论 -
DeepSeek V3:国产大模型惊艳世界,超越 Llama3.1,比肩 GPT-4o 与 Claude-3.5-Sonnet
DeepSeek-V3是深度求索公司推出的新一代混合专家(MoE)大语言模型,拥有6710亿参数,在14.8万亿token上预训练。该模型采用MoE架构提升性能与效率,支持FP8混合精度训练和多语言处理,在数学推理、代码生成等任务中表现优异。评测显示其性能超越主流开源模型,与GPT-4o等闭源模型相当,且生成速度提升3倍。适用于聊天、编程辅助、多语言翻译、教育辅导等场景。用户可通过在线平台或API访问,也支持本地部署,需安装sglang等依赖库后启动服务调用。原创 2025-07-25 10:52:00 · 950 阅读 · 0 评论 -
【GLM-4部署实战】GLM-4-9B-Chat模型之对话机器人部署测试
本文介绍了GLM-4-9B-Chat对话模型的完整部署流程。首先需要准备24G显存的GPU环境并安装PyTorch等依赖包。通过Modelscope下载约18GB的模型文件后,编写Gradio交互界面代码实现Web对话功能。文章提供了从环境配置、模型下载到Web界面部署的详细步骤,最终实现了一个可进行智能对话的AI系统。整个过程涉及硬件准备、依赖安装、模型获取和界面开发等关键环节。原创 2025-07-25 10:50:35 · 584 阅读 · 0 评论 -
阿里巴巴开源大作:EchoMimic—数字人技术的颠覆者
EchoMimic是由阿里巴巴蚂蚁集团推出的一款开源AI数字人项目,它通过先进的深度学习技术,将静态图像转化为具有动态语音和表情的数字人像。这项技术的核心在于它能够根据音频输入,实时生成与语音同步的口型和面部表情,从而原创 2025-07-24 14:45:00 · 565 阅读 · 0 评论 -
Ollama深度探索:AI大模型本地部署的全面教程
本文介绍了Ollama框架及其在本地运行大型语言模型(LLM)的应用。Ollama是一个轻量级、可扩展的框架,支持多种LLM的本地运行和管理,无需依赖远程服务器。其核心功能包括模型运行、管理(下载/更新/删除)以及通过Modelfile自定义模型参数等。文章详细讲解了安装配置、快速启动、REST API使用以及自定义模型训练等操作指南,并探讨了多模态支持、API高级用法等高级功能。Ollama为开发者提供了私密安全的本地AI解决方案,推动AI技术的民主化应用。原创 2025-07-24 10:05:44 · 945 阅读 · 0 评论 -
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
摘要:本文提出了一种多模态RAG方法,采用模态特定处理、后期融合和关系保留的技术架构,有效处理含图像、表格等视觉元素的文档。该方案通过结构感知分割、模态专用工具提取和HTML标准化转换三个核心模块,在保留内容关联性的同时实现23%的检索性能提升。系统具有模块化优势,支持单一组件升级,且基于开源工具构建,兼顾了性能、准确性和实施可行性,为多模态信息处理提供了优化解决方案。(149字)原创 2025-07-23 11:15:01 · 909 阅读 · 0 评论 -
必看!AI大模型学习路径,技能升级的终极指南,爆肝熬夜整理的大模型学习路线图,喂饭教程学完即就业
这份资料是初学者或有一定基础的开发/算法人员入门活深入大型语言模型学习的优秀参考。这份资料重点介绍了我们应该掌握哪些核心知识,并推荐了一系列优质的学习视频和博客,旨在帮助大家系统性地掌握大型语言模型的...原创 2025-07-22 14:33:02 · 858 阅读 · 0 评论 -
大模型学习路线(2025最新)神仙级大模型教程分享
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1. 数学基础学习资料2. 编程基础学习资料第二阶段:机器学习基础这一阶段...原创 2025-07-22 11:42:26 · 786 阅读 · 0 评论 -
【大模型】什么是大模型框架?常用的大模型框架盘点对比
大模型框架是用于训练、推理和部署大型语言模型的软件工具,具有高效性、可扩展性和灵活性等特点。常见框架包括:Ollama提供简洁API但功能有限;vLLM专注高效推理,并发性能优异;LightLLM结合多项开源技术实现极致速度,采用三进程异步协作和动态批处理。这些框架优化了计算资源管理,支持分布式训练,显著提升了模型处理效率。原创 2025-07-21 11:51:11 · 682 阅读 · 0 评论 -
大模型训练(超全面!超详细!)收藏这一篇就够了!
大模型训练分为预训练、监督调优和对齐三个阶段。预训练是核心基础,决定模型能力上限,主要学习语言流畅性和规则。模型架构可选择主流中文模型如ChatGLM、Baichuan等,参数量建议从0.5B开始。训练数据需1千万行以上,类型包括百科、新闻等通用文本,数据量约为参数量的20倍。训练成本估算显示,0.5B参数模型可在单张4090显卡上完成训练。原创 2025-07-21 11:36:43 · 977 阅读 · 0 评论 -
AI大模型提示工程(prompt)从入门到精通(非常详细),看这一篇就够了!!!
提示工程:优化大模型输出的关键技巧 提示工程(Prompt Engineering)通过设计高效提示词(prompt)来提升大语言模型(LLM)的表现,核心原则包括清晰具体的指令和给予模型思考时间。关键技巧: 指令优化:使用分隔符区分内容、要求结构化输出(如JSON)、检查前提条件、通过少样本示例引导模型。 分步推理:将复杂任务拆解为步骤,或要求模型逐步思考以减少错误。例如,先总结文本再翻译,最后提取关键信息。 工具辅助:结合代码调用API(如OpenAI),实现自动化提示设计与结果解析。 示例:生成书籍清原创 2025-07-18 11:15:32 · 299 阅读 · 0 评论 -
【动手教你学ChatGPT:爆款小红书文案生成】
【摘要】本文分享了利用ChatGPT生成小红书爆款文案的实用技巧。作者指出,ChatGPT的回答质量直接取决于提示词的精准度:提供产品特点、受众信息等越详细,生成的文案越符合需求。通过案例对比,展示了模糊提问与详细提问的效果差异,并强调人工润色对最终文案质量的重要性。文末附赠AI大模型学习资料包,包含提示词工程、RAG系统开发等实战内容,帮助读者从入门到进阶掌握AI文案创作技能,提升工作效率。(148字)原创 2025-07-18 10:32:19 · 383 阅读 · 0 评论 -
一文讲明白所有RAG概念!附带完整RAG实践过程!
RAG(检索增强生成)是一种结合检索技术与大语言模型的技术框架,旨在提升问答系统的准确性和上下文相关性。其核心流程包括知识库整理、嵌入模型转换、向量索引构建、查询检索及LLM生成回答。RAG可分为三个阶段:基础版Naive RAG、模块化Modular RAG和智能体基座的Agentic RAG。在医疗场景实践中,RAG能整合静态医学知识和动态患者数据,通过意图感知和工具调用实现智能问诊。该技术通过动态加载知识库,有效解决大模型的幻觉问题和数据局限,适用于垂直领域的快速部署。原创 2025-07-17 15:05:51 · 1003 阅读 · 0 评论 -
大模型文档神器:合合信息大模型加速器
本文介绍了合合信息TextIn推出的大模型"加速器"系列产品,包括通用文档解析和通用文本向量两大核心功能。该方案可1.5秒内解析百页文档,准确提取文本、表格、图像等元素并转换为Markdown格式;其自研的acge_text_embedding模型在C-MTEB中文榜单中排名第一,能有效解决大模型训练数据质量不佳、文档解析困难及文本向量化精度不足等问题。通过在线体验和API实践演示,展示了该技术在相似性搜索、信息检索等领域的应用价值。原创 2025-07-17 14:30:51 · 696 阅读 · 0 评论 -
AI大模型知识点梳理:大模型是什么?大模型发展历程、底层原理、优点和不足、如何学习大模型?
AI大模型入门指南 AI大模型是指参数规模超过10亿的深度学习模型,在自然语言处理、计算机视觉等领域表现突出。2022年以来,ChatGPT、GPT-4等大模型相继问世,国内外科技企业纷纷布局。大模型的训练包含数据预处理、神经网络构建、前向传播、优化算法等步骤,能有效解决NLP、图像识别等复杂任务。其优势在于准确性高、通用性强,但也面临计算资源消耗大、数据依赖性强等挑战。大模型的普及将重塑就业结构,带来效率提升的同时也引发隐私和伦理问题。为帮助初学者快速入门,本文提供包括学习路线图、实战案例等免费资源,涵盖原创 2025-07-16 14:59:03 · 681 阅读 · 0 评论 -
一文读懂DeepSeek-R1本地部署配置要求(建议收藏)
本文详细介绍了DeepSeek-R1不同版本模型的本地部署硬件要求及适用场景。1.5B版本适用于低资源设备,7B和8B适合本地开发测试,14B满足企业级复杂任务,32B和70B则针对专业领域和高复杂度任务,需要高端服务器配置。配置要求随着模型参数增加而显著提升,从基础CPU到多显卡并行不等,用户可根据实际需求选择合适的模型版本进行部署。原创 2025-07-16 11:34:54 · 929 阅读 · 0 评论 -
思考大模型如何为企业赋能,并提升竞争力_大模型赋能集团各个环节
摘要 大模型在企业应用中的落地需要综合考虑成本与收益。本文探讨了大模型的定义、智能化机制及未来发展方向,重点分析了其在医疗、零售、金融等垂直领域的应用价值。文章提出领域大模型的三层架构(通用+垂直+场景),并介绍了基于云原生技术的工程实现方案。最后强调,企业需结合自身业务需求和数据特点,合理选择大模型应用路径,避免盲目跟进或消极观望。为帮助从业者快速入门,文末提供了AI大模型学习资源包。 (字数:148字)原创 2025-07-15 10:35:18 · 551 阅读 · 0 评论 -
【2025重磅发布】DeepSeek-R1正式登场:性能比肩OpenAI o1,开源全栈生态+MIT开源协议 | 推理模型API深度解析
摘要: 2025年1月,深度求索发布新一代推理大模型DeepSeek-R1,性能对标OpenAI o1,并采用MIT开源协议,成为首个允许商业二次开发的顶级推理模型。其核心突破包括:1)三阶段强化学习架构,在GSM8K数学推理(92.3%)等任务表现优异;2)动态知识蒸馏技术,使3B小模型性能超越o1-mini 15%;3)全栈开源生态,支持API调用完整思维链;4)覆盖网页端、移动端及企业级API的多场景服务。该模型为AI开发者与企业提供高性能、开放的智能化解决方案,推动行业创新。原创 2025-07-15 10:16:06 · 1993 阅读 · 0 评论 -
本地部署 DeepSeek:环境准备 + 详细步骤 + 高级部署方案 + 可视化工具集成 + 故障排除手册 + 性能优化建议
非常详细的本地部署 DeepSeek:环境准备 + 详细步骤 + 高级部署方案 + 可视化工具集成 + 故障排除手册 + 性能优化建议原创 2025-07-12 15:44:33 · 708 阅读 · 0 评论 -
本地Windows环境部署Deepseek模型并实现远程访问方法
本文介绍了在Windows本地部署DeepSeek大模型并结合Page Assist浏览器插件的完整方案。首先通过Ollama下载并运行DeepSeek模型(如1.5b轻量级版本),实现本地AI对话功能。然后安装Page Assist插件,将普通浏览器升级为智能交互平台。针对无法访问应用商店的用户,提供了离线安装包。该方案创新性地结合cpolar内网穿透技术,无需公网IP即可实现远程访问,简化了部署流程,为用户提供高效便捷的AI交互体验。文末还附有视频教程链接,帮助用户快速上手。原创 2025-07-12 14:28:02 · 315 阅读 · 0 评论 -
大模型RAG系列:什么是RAG?RAG是如何解决问题的?RAG的未来发展趋势!
RAG(检索增强生成)是一种结合检索技术与大语言模型的解决方案,通过从外部知识库检索相关信息并整合到提示模板中,提升模型回答的准确性和时效性。它解决了大模型的知识局限性、幻觉问题和数据安全性等痛点,适用于企业私域数据场景。RAG流程包括数据准备(提取、分割、向量化入库)和应用阶段(检索、Prompt生成、LLM回答),具有利用外部知识、实时更新、回复可解释和高度定制化等优势,成为当前大模型应用的热门方案。原创 2025-07-11 15:21:21 · 270 阅读 · 0 评论 -
不用苦苦寻觅!这是大模型检索增强生成(RAG)最全综述!
本文介绍了RAG(检索增强生成)技术,通过整合外部知识库解决大语言模型(LLM)的幻觉问题和新知识获取不足的局限。RAG在用户发起请求时,先检索相关信息并整合到提示词中,最终生成更准确的回答。文章详细梳理了RAG的三种框架(Naive、Advanced、Modular)、五大优化方向(索引、检索源、查询、嵌入、检索过程)及评估方法,并推荐了Milvus等向量数据库和LlamaIndex等开发框架。RAG因其易用性和高效性成为LLM应用的热门方案。技术交流可通过机器学习社区微信公众号或添加微信号mlc2060原创 2025-07-11 14:29:53 · 284 阅读 · 0 评论 -
一文彻底搞懂大模型 - RAG(检索、增强、生成)
摘要: RAG(检索增强生成)是一种结合信息检索与大语言模型(LLM)的AI技术,通过从外部知识库检索相关信息来增强LLM生成答案的准确性和时效性。其核心流程包括检索(获取相关知识)、增强(将知识融入提示词)和生成(LLM输出最终回答)。RAG解决了LLM的知识截止和幻觉问题,适用于问答、摘要等场景。技术架构由检索模块(向量化搜索)和生成模块(上下文融合)组成,典型应用包括构建知识问答系统,涉及数据准备、向量索引、相似度检索和提示增强等步骤。该技术由Facebook AI于2020年提出,现已成为大模型应用原创 2025-07-11 13:57:00 · 277 阅读 · 0 评论 -
从零开始搭建 RAG 智能问答系统:一个完整的实战案例|附源码
智能问答系统实现方案 本文介绍了基于RAG(检索增强生成)技术构建智能问答系统的完整流程。项目亮点包括快速部署、多格式文档支持、精准回答和答案溯源功能。系统可将Word文档转换为PDF格式,通过RAGFlow平台构建知识库,并提供API接口实现智能问答。 技术实现分为三个部分: 环境准备:配置Python环境,安装依赖包,设置API密钥 文档处理:将Word文档转换为PDF,选用Manual解析方式处理图文混排内容 API集成:通过RAGFlow的会话管理和问答API实现智能交互 系统适用于企业知识库管理、原创 2025-07-10 11:53:33 · 970 阅读 · 0 评论 -
2025年AI大模型的趋势与洞察
2025 年大模型技术在应用侧的新趋势是什么?哪些新的技术方向值得关注?企业在规划 2025 年数字化项目时有哪些核心关注点?本文将基于爱分析与企业用户、模型厂商的调研交流中,抽象和总结出 2025 年的趋势和洞察,供大家参考。原创 2025-07-08 11:36:20 · 1004 阅读 · 0 评论 -
【AI大模型】DeepSeek + Kimi 高效制作PPT实战详解
在传统PPT制作流程中,从业者平均需要花费76%的时间在资料搜集、数据验证与格式调整等低附加值环节(数据来源:Gartner 2024)。DeepSeek与Kimi的协同应用,通过「内容生成-数据强化-设计优化」三位一体的解决方案,正在重构演示文档的生产模式。原创 2025-07-08 10:45:04 · 1369 阅读 · 0 评论 -
一文读懂大模型RAG:检索、增强与生成的技术详解
摘要:RAG(检索增强生成)技术通过结合信息检索与大语言模型,有效解决大模型"幻觉"问题。该技术先检索外部知识库获取相关信息,再将检索结果作为上下文输入生成模型,从而提升回答准确性。RAG架构包含检索模块(负责快速查找相关文档)和生成模块(基于检索内容生成回答),适用于金融、医疗等专业领域。相比昂贵的微调方案,RAG提供了一种更经济高效的解决方案,使通用大模型能够处理特定领域知识任务。本文还介绍了RAG的工作流程和模拟场景示例。原创 2025-07-07 17:54:44 · 745 阅读 · 0 评论 -
大模型RAG优化方案与实践(非常详细)从入门到精通,看这一篇就够了
RAG技术综述:挑战、范式与实践 RAG(检索增强生成)技术通过结合检索与生成模型,为解决大语言模型的知识局限、滞后性、幻觉等问题提供了新思路。文章系统分析了RAG的三大挑战:数据质量差导致检索效果不佳、向量化信息损失和语义搜索不准确。详细阐述了RAG的三种范式演进:基础RAG仅包含检索-生成流程;高级RAG在检索前后增加优化策略(如知识切分、query改写、提示压缩等);模块化RAG则引入搜索、预测、记忆等新功能模块,实现更灵活的架构设计。文章指出,RAG技术正从单一流程向模块化、多技术融合的方向发展,为原创 2025-07-07 17:12:33 · 731 阅读 · 0 评论 -
DeepSeek本地部署+UI可视化+本地知识库训练AI之新手教程,建议收藏!
利用DeepSeek构建专属AI知识库 本文介绍了如何将DeepSeek本地化,并通过数据投喂打造个人或企业的专属AI助手。首先,安装Page Assist插件实现WebUI可视化交互,支持PDF、文档对话等功能。其次,通过下载nomic-embed-text模型和安装AnythingLLM软件,完成本地知识库训练,实现数据投喂和AI模型优化。最后,在工作区上传资料进行模型训练,使DeepSeek能基于特定领域知识生成更精准的回复。该方案适用于希望利用AI高效管理私有知识库的用户,提升信息处理效率。原创 2025-07-04 10:59:57 · 917 阅读 · 0 评论 -
DeepSeek一直“服务器繁忙,请稍后再试”怎么办?
DeepSeek AI大模型凭借母公司幻方资本的技术实力和算力优势迅速崛起,其开源策略进一步推动了全球热度。面对官方服务器压力,用户可通过钉钉等平台体验完整功能,或本地部署开源模型。文章详细介绍了使用钉钉配置API和本地部署流程(以1.5b模型为例),并指出更大模型需要更高算力支持。最后提供了系统化的大模型学习路径,包含三个阶段(初阶应用、高阶应用、模型训练)的完整课程体系,帮助从业者掌握核心技能应对AI时代机遇。原创 2025-07-04 10:58:10 · 932 阅读 · 0 评论 -
【AI大模型】初识LangChain的快速入门指南(附入门文档)
LangChain是一个基于大语言模型的开发框架,提供六大核心组件(模型、提示模板、数据检索、记忆、链和代理)来简化LLM应用开发流程。该框架支持从开发到部署的全生命周期,包括开源构建块(langchain-core/community)、架构组件(langchain)、工作流工具(langgraph)和部署服务(langserve)。开发者可以利用LangSmith平台进行调试监控,并通过REST API快速部署应用,实现文本生成、智能问答等功能。原创 2025-07-03 11:24:45 · 1031 阅读 · 0 评论