【PAT(甲级)】1019 General Palindromic Number

该博客讨论了如何确定一个十进制正整数在给定的任意进制下是否为回文数。通过将数字转换为指定进制并比较其正向和反向数字的相等性来实现。文章提供了代码示例,演示了如何使用C++解决此问题,并强调了使用long long int类型存储数值以避免溢出的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

Although palindromic numbers are most often considered in the decimal system, the concept of palindromicity can be applied to the natural numbers in any numeral system. Consider a number N>0 in base b≥2, where it is written in standard notation with k+1 digits ai​ as \sum_{i=0}^{k}​(a_{i}b^{i}). Here, as usual, 0≤ai​<b for all i and ak​ is non-zero. Then N is palindromic if and only if ai​=ak−i​ for all i. Zero is written 0 in any base and is also palindromic by definition.

Given any positive decimal integer N and a base b, you are supposed to tell if N is a palindromic number in base b.

Input Specification:

Each input file contains one test case. Each case consists of two positive numbers N and b, where 0<N≤10^{9} is the decimal number and 2≤b≤10^{9} is the base. The numbers are separated by a space. 

Output Specification:

For each test case, first print in one line Yes if N is a palindromic number in base b, or No if not. Then in the next line, print N as the number in base b in the form "ak​ ak−1​ ... a0​". Notice that there must be no extra space at the end of output.

Sample Input 1:

27 2

Sample Output 1:

Yes
1 1 0 1 1

Sample Output 2:

121 5

Sample Output 2:

No
4 4 1

解题思路:

进制转换的结果用vector存储,然后用反向迭代器和正的顺序比较,相同就输出yes,相反就输出no。

易错点:

因为进制和数字都是小于10^{9},所以要用long long int来存储。另外这题好像不用考虑计算过程中溢出的情况。

代码:

#include<bits/stdc++.h>
using namespace std;
vector<string> a;
void write(int b){
	if(b) cout<<"Yes"<<endl;
	else cout<<"No"<<endl;
	for(auto i=a.rbegin();i!=a.rend();i++){
    //反向输出,因为一开始换进制的时候就没有倒序取余
		cout<<*i;
		if(i!=a.rend()-1) cout<<" ";
	}
}
int main(){
	long long int N,b;
	cin>>N>>b;
	while(N!=0){
		a.push_back(to_string(N%b));//不需要倒叙取,用迭代器就行
		N/=b;
	}
	int j=0;
	int flag=1;
	for(auto i=a.rbegin();i!=a.rend();i++){//反向迭代器,将其正反进行比较
		if(*i!=a[j++]){
			flag=0;
			break;
		}
	}
	write(flag);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值