A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.
Although palindromic numbers are most often considered in the decimal system, the concept of palindromicity can be applied to the natural numbers in any numeral system. Consider a number N>0 in base b≥2, where it is written in standard notation with k+1 digits ai as (
). Here, as usual, 0≤ai<b for all i and ak is non-zero. Then N is palindromic if and only if ai=ak−i for all i. Zero is written 0 in any base and is also palindromic by definition.
Given any positive decimal integer N and a base b, you are supposed to tell if N is a palindromic number in base b.
Input Specification:
Each input file contains one test case. Each case consists of two positive numbers N and b, where 0<N≤ is the decimal number and 2≤b≤
is the base. The numbers are separated by a space.
Output Specification:
For each test case, first print in one line Yes
if N is a palindromic number in base b, or No
if not. Then in the next line, print N as the number in base b in the form "ak ak−1 ... a0". Notice that there must be no extra space at the end of output.
Sample Input 1:
27 2
Sample Output 1:
Yes
1 1 0 1 1
Sample Output 2:
121 5
Sample Output 2:
No
4 4 1
解题思路:
进制转换的结果用vector存储,然后用反向迭代器和正的顺序比较,相同就输出yes,相反就输出no。
易错点:
因为进制和数字都是小于,所以要用long long int来存储。另外这题好像不用考虑计算过程中溢出的情况。
代码:
#include<bits/stdc++.h>
using namespace std;
vector<string> a;
void write(int b){
if(b) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
for(auto i=a.rbegin();i!=a.rend();i++){
//反向输出,因为一开始换进制的时候就没有倒序取余
cout<<*i;
if(i!=a.rend()-1) cout<<" ";
}
}
int main(){
long long int N,b;
cin>>N>>b;
while(N!=0){
a.push_back(to_string(N%b));//不需要倒叙取,用迭代器就行
N/=b;
}
int j=0;
int flag=1;
for(auto i=a.rbegin();i!=a.rend();i++){//反向迭代器,将其正反进行比较
if(*i!=a[j++]){
flag=0;
break;
}
}
write(flag);
return 0;
}