1、电容元件
a定义
b线性时不变电容元件
c电容的电压与电流关系
i有限则u有限
注意理解面积
d电容的功率和储能
e例一
跃变就是指物体的物理量从有限值变为无限值的过程。
分析上图例题:对于电源波形要吃负无穷到正无穷去刻画。即时间轴要铺满。
有有图控制电压函数。
知道电容值和电压的函数,就可以推出电流的函数
知道U和i的函数就可以推出功率的函数
知道电容值和电压的函数,就可以推出能量的函数
e例二
与例一相比是反过来,
f实际电容器的电路模型
实际使用电容有时要考虑它的能量损耗考虑有电阻,电感效应,即是非线性的。是电容与电阻或电感的组合
g科普知识
电容分为分布电容和杂散电容
理论上含有电荷,电荷不移动就会有电容,比如电线杆间的电线与地面就是分布式电容。晶体三极管和二极管,PCB上的走线与走线之间也会分布着杂散电容,这些分布电容和杂散电容是否要设计到电路中,一般工作在高频环境是才考虑在尽量简化和真实的前提下反映到电路模型中。
2、电感元件
a定义
在国际单位制中,磁通量的单位是韦伯,是以德国物理学家威廉·韦伯的名字命名的。Weber,符号是Wb,1Wb=1Tm2=1VS,是标量,但有正负,正负仅代表穿向。
b线性时不变电感元件
c线性电感的电压与电流关系
电感的结论与电容对偶。
d电感的功率与存储
e实际电感线圈的模型
电容效应,电阻能量消耗
3、电容、电感元件的串联与并联
电容像电导,电感像电阻
a电容串联
b电容并联
c电感串联
d电感并联
e电容电感并联
电感电容并联等效为无的情况可以通过特定的条件实现,但这并不是一个普遍适用的规则。在电路理论中,电感(L)和电容(C)并联的等效电路分析需要考虑它们的电气特性。电感对电流的变化产生反应,而电容则对电压的变化产生反应。当电感与电容并联时,它们会相互影响,形成一个复杂的电路行为,而不是简单地等效为“无”。
然而,在某些特定条件下,电感与电容并联的组合可以表现出特定的电气特性,这些特性在某些情况下可以被视为等效于“无”。例如,当电感与电容的数值和性质满足特定条件时,它们可能会相互抵消,使得整个并联组合的表现接近于开路或短路,但这并不是一个普遍适用的规则。
具体来说,电感与电容并联的等效分析需要考虑它们的阻抗特性。电感的阻抗通常表示为 ZL=JWL,而电容的阻抗表示为Zc= 1/jwc。并联电路的总阻抗是各个元件阻抗的倒数和的倒数,即 1/Ztoltal=1/ZL+1/Zc。在某些特定频率下,如果电感和电容的数值被恰当地选择,它们的阻抗可以相互抵消,使得总阻抗趋于无穷大或零,但这需要具体的数值分析和计算来确定。
总的来说,电感与电容并联并不总是等效为“无”,而是需要通过具体的数值分析和计算来确定其在特定条件下的等效行为。在实际应用中,需要根据具体的电路要求和元件参数来设计和分析电感与电容并联电路的性能
4、作业
略