PaddleNLP加载数据集和自定义数据数据集


本文主要是讲解如何使用PaddleNLP中的 load_dataset()方法,包含如何加载内置数据集和自定义数据集。

加载数据集

快速加载内置数据集

目前PaddleNLP内置20余个NLP数据集,涵盖阅读理解,文本分类,序列标注,机器翻译等多项任务。目前提供的数据集可以在 数据集列表 中找到。

msra_ner 数据集为例:

from paddlenlp.datasets import load_dataset
# 读取msra_ner数据集的训练集和测试集
train_ds, test_ds = load_dataset("msra_ner", splits=("train", "test"))

load_dataset() 方法会从 paddlenlp.datasets 下找到msra_ner数据集对应的数据读取脚本(默认路径:paddlenlp/datasets/msra_ner.py),并调用脚本中 DatasetBuilder 类的相关方法生成数据集。

生成数据集可以以 MapDatasetIterDataset 两种类型返回,分别是对 paddle.io.Datasetpaddle.io.IterableDataset 的扩展,只需在 load_dataset() 时设置 lazy 参数即可获取相应类型。Flase 对应返回 MapDatasetTrue 对应返回 IterDataset,默认值为None,对应返回 DatasetBuilder 默认的数据集类型,大多数为 MapDataset

from paddlenlp.datasets import load_dataset
train_ds = load_dataset("msra_ner", splits="train")
print(type
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值