本期文章简介
本文来自SUMO中文社区成员投稿。
作者信息:王孟琳,研究方向为强化学习与交通控制。
欢迎大家赐稿,共建SUMO中文社区,共同进步。
以下为正文
可变车道
可变导向车道是一种通过动态分配车道功能,以适应实时交通流变化的智能交通管理技术。该技术依托交通信息采集与需求评估系统,实时获取路段上的车流状态,并根据不同方向的通行需求调整车道的通行功能,从而实现道路资源的最优配置。
在实际应用中,可变导向车道通常配合动态标志或信号系统进行指示(如图1所示),以引导车辆按照当前规定的通行方向行驶。这种方式能够在早晚高峰等不同时段,灵活调整车道行驶方向,有效缓解高需求的方向的拥堵程度,提升通行效率。

SUMO作为一个开源的微观交通仿真平台,原生并不支持在仿真过程中动态修改网络结构来实现可变导向车道。但可以通过间接控制手段,如限制车道通行权限或控制车辆类型的行驶路径,模拟可变导向车道的运行效果。
实现原理
-
通过控制车道的通行权,来实现可变导向车道的控制。
-
车辆的rou文件是已经定义好的,起点和终点(或者行驶路径的路段和车道)。
-
所以车辆在交叉口的直行或者左转也是已知的。
-
通过设定不同的车辆类型进行直行或者左转。
实现方法
借助TraCI实现动态控制
在SUMO仿真过程中,可以通过TraCI接口动态修改车道的通行权限,从而模拟可变导向车道的功能。常用方法包括:
-
traci.lane.setAllowed(laneID, [vType])
:设置允许通过某车道的车辆类型; -
traci.lane.setDisallowed(laneID, [vType])
:设置禁止通过某车道的车辆类型。
通过控制某车道在特定时刻允许不同类型的车辆通行,就能模拟其导向功能的“变换”,例如直行车道改为左转车道。
rou文件示例
在车辆定义中设置不同类型,以区分可通行的车道范围:
<vType id="CarA" length="5.00" maxSpeed="22.00" vClass="passenger" color="yellow"/>
<vType id="CarB" length="5.00" maxSpeed="22.00" vClass="private" color="white"/>
-
CarA 可设置为左转车辆;
-
CarB 可设置为直行车辆;
在运行中通过车道权限控制,使某条车道在不同时间只允许特定类型车辆通行,从而实现导向功能变换。
示例代码片段
import traci
traci.start(["sumo", "-c", "your_config.sumocfg"])
step = 0
while traci.simulation.getMinExpectedNumber() > 0:
traci.simulationStep()
if step == 3600:
do_action_lane=0
# 将lane_2变为直行车道
if do_action_lane == 0:
traci.lane.setDisallowed("lane_2", "passenger")
traci.lane.setAllowed("lane_2", "private")
# 将lane_2变为左转车道
elif do_action_lane == 1:
traci.lane.setDisallowed("lane_2", "private")
traci.lane.setAllowed("lane_2", "passenger")
step += 1
traci.close()
优点
-
灵活性高,可按秒控制;
-
可与交通信号联动使用;
-
实时性好,适合多变场景。
注意事项
交叉口处设置实线导向车道线(禁止车道变道)
在可变导向车道的入口及交叉口附近,应设置实线导向车道线,以限制车辆在接近交叉口时随意变道。

信号灯设置(可变导向车道由两个方向的信号灯控制)

运行效果
在仿真场景中,西进口的第二条车道被设定为可变导向车道。该车道的通行方向根据仿真时间动态切换:
-
当背景为黑色时,表示该车道被设置为左转车道,仅允许左转车辆通行;
-
当背景为白色时,表示该车道被设置为直行车道,仅允许直行车辆通行。
在车辆类型标识上:
-
黄色车辆(对应车辆类型 CarA)为左转车辆;
-
白色车辆(对应车辆类型 CarB)为直行车辆。
通过 TraCI 接口在仿真过程中控制车道的允许通行类型,可以清晰地观察到不同时间段内,车辆根据导向车道的变化调整行驶路径,实现了对可变车道功能的有效模拟。
-- the end --关于SUMO中文社区
简介
SUMO中文社区正式成立于2020年,早期由东南大学匿名博士发起,后由BigTrans主编负责管理和推广,社区规模逐步壮大。目前有超3500人的学习交流群,QQ群已突破2000人(可容纳3000人的超级群,(1群)群号527024674,(2群)群号324712703),3个微信群及1个信控仿真小组群(累计人数约1500人)。群内有来自学界的教授老师和高校硕博本优秀学生,也有来自业界的实战研发专家和资深前辈,学习讨论氛围浓厚,不定期案例和教程分享。
成果
之前发布过几版由社区沉淀下来的问答文档,涉及内容广泛,有较高参考价值。随后在BigTrans公众号发布了近30多篇原创教程文章,涉及多个进阶主题和实操案例。希望可以帮助到大家学习SUMO,欢迎更多的朋友加入社区共同进步。