基于TraCI实现SUMO可变车道场景仿真

本期文章简介

本文来自SUMO中文社区成员投稿。

作者信息:王孟琳,研究方向为强化学习与交通控制。

欢迎大家赐稿,共建SUMO中文社区,共同进步。


以下为正文

可变车道

可变导向车道是一种通过动态分配车道功能,以适应实时交通流变化的智能交通管理技术。该技术依托交通信息采集与需求评估系统,实时获取路段上的车流状态,并根据不同方向的通行需求调整车道的通行功能,从而实现道路资源的最优配置。

在实际应用中,可变导向车道通常配合动态标志或信号系统进行指示(如图1所示),以引导车辆按照当前规定的通行方向行驶。这种方式能够在早晚高峰等不同时段,灵活调整车道行驶方向,有效缓解高需求的方向的拥堵程度,提升通行效率。

图1 可变导向车道标志设置

SUMO作为一个开源的微观交通仿真平台,原生并不支持在仿真过程中动态修改网络结构来实现可变导向车道。但可以通过间接控制手段,如限制车道通行权限或控制车辆类型的行驶路径,模拟可变导向车道的运行效果。

实现原理

  1. 通过控制车道的通行权,来实现可变导向车道的控制。

  2. 车辆的rou文件是已经定义好的,起点和终点(或者行驶路径的路段和车道)。

  3. 所以车辆在交叉口的直行或者左转也是已知的。

  4. 通过设定不同的车辆类型进行直行或者左转。

实现方法

借助TraCI实现动态控制

在SUMO仿真过程中,可以通过TraCI接口动态修改车道的通行权限,从而模拟可变导向车道的功能。常用方法包括:

  • traci.lane.setAllowed(laneID, [vType]):设置允许通过某车道的车辆类型;

  • traci.lane.setDisallowed(laneID, [vType]):设置禁止通过某车道的车辆类型。

通过控制某车道在特定时刻允许不同类型的车辆通行,就能模拟其导向功能的“变换”,例如直行车道改为左转车道。

rou文件示例

在车辆定义中设置不同类型,以区分可通行的车道范围:

<vType id="CarA" length="5.00" maxSpeed="22.00" vClass="passenger" color="yellow"/>
<vType id="CarB" length="5.00" maxSpeed="22.00" vClass="private" color="white"/>
  • CarA 可设置为左转车辆;

  • CarB 可设置为直行车辆;

在运行中通过车道权限控制,使某条车道在不同时间只允许特定类型车辆通行,从而实现导向功能变换。

示例代码片段

import traci
traci.start(["sumo", "-c", "your_config.sumocfg"])
step = 0
while traci.simulation.getMinExpectedNumber() > 0:
    traci.simulationStep()
    
if step == 3600:
do_action_lane=0
# 将lane_2变为直行车道
     if do_action_lane == 0:
         traci.lane.setDisallowed("lane_2", "passenger")
         traci.lane.setAllowed("lane_2", "private")
# 将lane_2变为左转车道
     elif do_action_lane == 1:
         traci.lane.setDisallowed("lane_2", "private")
         traci.lane.setAllowed("lane_2", "passenger")    
     step += 1

traci.close()

优点

  • 灵活性高,可按秒控制;

  • 可与交通信号联动使用;

  • 实时性好,适合多变场景。

注意事项

交叉口处设置实线导向车道线(禁止车道变道)

在可变导向车道的入口及交叉口附近,应设置实线导向车道线,以限制车辆在接近交叉口时随意变道。

图2 禁止变道设置

信号灯设置(可变导向车道由两个方向的信号灯控制)

图3 信号灯设置

运行效果

在仿真场景中,西进口的第二条车道被设定为可变导向车道。该车道的通行方向根据仿真时间动态切换:

  • 当背景为黑色时,表示该车道被设置为左转车道,仅允许左转车辆通行;

  • 当背景为白色时,表示该车道被设置为直行车道,仅允许直行车辆通行。

在车辆类型标识上:

  • 黄色车辆(对应车辆类型 CarA)为左转车辆;

  • 白色车辆(对应车辆类型 CarB)为直行车辆。

通过 TraCI 接口在仿真过程中控制车道的允许通行类型,可以清晰地观察到不同时间段内,车辆根据导向车道的变化调整行驶路径,实现了对可变车道功能的有效模拟。

-- the end --
 关于SUMO中文社区

简介

SUMO中文社区正式成立于2020年,早期由东南大学匿名博士发起,后由BigTrans主编负责管理和推广,社区规模逐步壮大。目前有超3500人的学习交流群,QQ群已突破2000人(可容纳3000人的超级群,(1群)群号527024674,(2群)群号324712703),3个微信群及1个信控仿真小组群(累计人数约1500人)。群内有来自学界的教授老师和高校硕博本优秀学生,也有来自业界的实战研发专家和资深前辈,学习讨论氛围浓厚,不定期案例和教程分享。

成果

之前发布过几版由社区沉淀下来的问答文档,涉及内容广泛,有较高参考价值。随后在BigTrans公众号发布了近30多篇原创教程文章,涉及多个进阶主题和实操案例。希望可以帮助到大家学习SUMO,欢迎更多的朋友加入社区共同进步。

内容概要:本文档详细介绍了基于MATLAB实现的无人机三维路径规划项目,核心算法采用蒙特卡罗树搜索(MCTS)。项目旨在解决无人机在复杂三维环境中自主路径规划的问题,通过MCTS的随机模拟与渐进式搜索机制,实现高效、智能化的路径规划。项目不仅考虑静态环境建模,还集成了障碍物检测与避障机制,确保无人机飞行的安全性和效率。文档涵盖了从环境准备、数据处理、算法设计与实现、模型训练与预测、性能评估到GUI界面设计的完整流程,并提供了详细的代码示例。此外,项目采用模块化设计,支持多无人机协同路径规划、动态环境实时路径重规划等未来改进方向。 适合人群:具备一定编程基础,特别是熟悉MATLAB和无人机技术的研发人员;从事无人机路径规划、智能导航系统开发的工程师;对MCTS算法感兴趣的算法研究人员。 使用场景及目标:①理解MCTS算法在三维路径规划中的应用;②掌握基于MATLAB的无人机路径规划项目开发全流程;③学习如何通过MCTS算法优化无人机在复杂环境中的飞行路径,提高飞行安全性和效率;④为后续多无人机协同规划、动态环境实时调整等高级应用打下基础。 其他说明:项目不仅提供了详细的理论解释和技术实现,还特别关注了实际应用中的挑战和解决方案。例如,通过多阶段优化与迭代增强机制提升路径质量,结合环境建模与障碍物感知保障路径安全,利用GPU加速推理提升计算效率等。此外,项目还强调了代码模块化与调试便利性,便于后续功能扩展和性能优化。项目未来改进方向包括引入深度强化学习辅助路径规划、扩展至多无人机协同路径规划、增强动态环境实时路径重规划能力等,展示了广阔的应用前景和发展潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值