lstm+crf 信息抽取 实体识别 代码

本教程介绍如何用LSTM+CRF模型进行事件抽取,涉及数据集、模型定义、训练、评估和预测。数据集包含65个事件类型,1.2万训练样本,0.15万验证和测试样本。模型处理IOB标注的数据,使用PyTorch实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

可以作为毕业设计 可以用来练手 可以用作论文基础模型

任务描述:

数据集:

运行环境:

数据说明

数据处理

处理数据集

保存数据集:

加载数据

事件抽取模型 lstm+crf

定义模型

 实例化模型 训练 

保存模型

模型评估

预测示例


可以作为毕业设计 可以用来练手 可以用作论文基础模型

任务描述:

本教程介绍和实现一个简单的事件抽取方法,事件抽取是给出一条文本,需要提取出该文本所提及的预定义事件信息。


数据集:

使用来自互联网百度大脑提供的中文事件抽取数据集,数据总量约为1.5万条。

事件抽取数据集事件抽取数据集-数据集文档类资源-CSDN下载

运行环境:

Python3.7环境下测试了本教程代码。需要的第三方模块和版本包括:

torchcrf=0.7.0
torch=1.5.0
json5=0.9.4
matplotlib=3.0.3
torchtext=0.6.0
numpy=1.18.1
# 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机毕设论文

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值