R语言的现代贝叶斯统计学方法

本文详细介绍了贝叶斯统计学的核心思想和概念,包括信念函数、贝叶斯法则和概率估计。讨论了一参数模型、蒙特卡罗方法在概率推断中的应用,以及正态模型、吉布斯采样和MCMC方法。同时,涵盖了多元正态分布、线性回归、非共轭先验与M-H算法,以及线性与广义线性混合效应模型在处理有序数据时的隐变量模型。内容深入且实用,旨在帮助研究者克服贝叶斯统计学的使用挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

更多资讯,关注公众号:Ai尚研修科研技术动态

贝叶斯统计学是一门基本思想与传统基于频率思想的统计学完全不同的统计学方法;它以其灵活性和先进性在现代的统计学中占据着重要的地位。贝叶斯统计学是开展科学研究不可缺少的重要手段,但是,因为其思想、技术和方法都与传统统计学有着较大区别;且其计算中涉及马尔科夫、蒙特卡罗和吉布斯采样等现代计算方法,对使用者经验和能力构成了很大的挑战。让广大研究者准确灵活的应用贝叶斯统计学,打通学科专业与贝叶斯统计学间的壁垒。

汪博士,长期从事统计学及水文分析研究及教学工作,对回归分析,贝叶斯及变量与变量间的关系等领域有深入的研究及实践应用经验。

专题一 贝叶斯统计学的思想与概念
1.1 信念函数与概率

1.2 事件划分与贝叶斯法则

1.3 稀少事件的概率估计

1.4 可交换性

1.5 预测模型的构建

专题二 一参数模型
2.1 二项式模型与置信域

2.2 泊松模型与后验分布

2.3 指数族模型与共轭先验

专题三 蒙特卡罗逼近
3.1 蒙特卡罗方法

3.2 任意函数的后验推断

3.3 预测分布采样

3.4 后验模型检验

专题四 正态模型
4.1 均值与条件方差的推断

4.2 基于数学期望的先验

4.3非正态分布的正态模型

专题五 吉布斯采样
5.1 半共轭先验分布

5.2 离散近似

5.3 条件分布中的采样

5.4 吉布斯采样算法及其性质

5.5 MCMC方法

专题六 多元正态分布与组比较
6.1 多元正态分布的密度

6.2 均值的半共轭先验

6.3 逆-Wishart分布

6.4 缺失数据与贝叶斯插补

6.5 组间比较

6.6分层模型的均值与方差

专题七 线性回归
7.1 回归的本质与最小二乘法

7.2 回归的贝叶斯估计

7.3 模型的贝叶斯比较

7.4 吉布斯采样与模型平均

7.5 指数模型比较与选择

7.6 总结与结论

7.7 Python的Copula相关包介绍

专题八 非共轭先验与M-H算法
8.1 广义线性模型

8.2 泊松模型Metropolis算法

8.3 Metropolis-Hastings算法

8.4 M-H算法与吉布斯采样的组合

专题九 线性与广义线性混合效应模型
9.1 多层回归模型

9.2 全条件分布

9.3 广义线性混合效应模型

专题十 有序数据的隐变量模型
10.1 有序Probit回归

10.2 秩的似然

10.3 高斯Copula模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值