
numpy
文章平均质量分 92
心动啊121
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Numpy10——特殊矩阵,矩阵的运算性质,linalg,plt模块的介绍
总结了线性代数中常见的特殊矩阵类型、性质和矩阵分解方法,并介绍了NumPy线性代数模块的核心功能原创 2025-06-17 17:21:40 · 566 阅读 · 0 评论 -
Numpy9——投影矩阵、最小二乘法、奇异值分解
投影矩阵、最小二乘法、奇异值分解(图片压缩)原创 2025-06-16 15:07:13 · 805 阅读 · 0 评论 -
Numpy8——正交矩阵、特征值和特征向量、矩阵的对角化
介绍了正交矩阵和矩阵对角化的核心概念,展示如何使用NumPy验证正交矩阵性质、计算特征值/向量以及实现矩阵对角化应用原创 2025-06-16 08:26:55 · 750 阅读 · 0 评论 -
Numpy6——数学1(向量)
两个向量作为输入得到一个新的向量,得到的向量垂直于输入向量所构建的平面。(适用于三维空间,两个向量相乘得到一个向量):向量×向量,逐个元素相乘,再将相乘得到的结果进行相加,得到一个标量,满足交换律。向量的标量乘法:实数×向量,每个元素乘以实数,返回一个一维向量。在几何上表示两个向量的模相乘,再乘两个向量的夹角的cos值。本质:NumPy 的“向量”是 一维数组,没有行列区分。:向量的每个元素都相乘,最后返回一个一维向量。向量的加减法:逐个元素相加减。:两个向量相乘得到一个矩阵。表现形式:一维数组,原创 2025-06-10 16:53:08 · 988 阅读 · 0 评论 -
Numpy7——数学2(矩阵基础(矩阵的逆和行列式),线性方程基础)
矩阵基础—到—线性方程基础原创 2025-06-10 16:52:16 · 1049 阅读 · 0 评论 -
Numpy5——数组的扩充(相加、复制、广播)排序,形状调整
数组扩充,形状调整以及排序原创 2025-06-06 17:01:55 · 692 阅读 · 0 评论 -
Numpy4——结构化数组和Numpy文件
Numpy文件和结构化数组原创 2025-06-04 21:40:53 · 374 阅读 · 0 评论 -
Numpy3——通用函数、向量化、基础的统计计算
numpy的通用函数,向量化,统计计算函数原创 2025-06-04 16:51:08 · 600 阅读 · 0 评论 -
Numpy2——视图和副本、随机数(random伪)、切片和索引、数组的轴操作
视图和副本、索引和切片、数组的转置和轴对换、伪随机数原创 2025-06-03 18:48:51 · 869 阅读 · 0 评论 -
Numpy1——创建、数据类型、属性、和列表的差异
numpy数组的创建、类型说明、属性和列表的差异原创 2025-06-03 17:17:19 · 702 阅读 · 0 评论