【深度学习】—激活函数、ReLU 函数、 Sigmoid 函数、Tanh 函数
4.1.2 激活函数
激活函数(activation function)用于计算加权和并加上偏置,决定神经元是否被激活。它将输入信号转化为可微的输出,大多数激活函数是非线性的。激活函数是深度学习的基础,下面介绍几种常见的激活函数。
ReLU 函数
最受欢迎的激活函数是修正线性单元(Rectified Linear Unit, ReLU),它实现简单且在各种预测任务中表现优异。ReLU 提供了一种非常简单的非线性变换,定义为:
通俗地说,ReLU 通过将负值设为 0,仅保留正数。我们可以通过下列代码绘制 ReLU 函数的曲线来直观感受其行为。正如图中所示,ReLU 是分段线性的。
import torch
from d2l import torch as d2l
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.relu(x)
d2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(5, 2.5))
当输入为负时,ReLU 的导数为 0;当输入为正时,导数为 1。当输入值精确等于 0 时,ReLU 不可导,但我们通常忽略这种情况,假设导数为 0。我们可以绘制 ReLU 函数的导数曲线。
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.