智能算法(GA\PSO)微电网优化运行

本文介绍了一种使用粒子群算法(PSO)和遗传算法(GA)对微电网进行优化运行的方法。通过个体初始化、选择、交叉、变异等步骤实现种群进化,寻找最优解来降低微电网的成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

智能算法(GA\PSO)微电网优化运行

 

粒子群算法主程序:

%% 个体初始化
gen=1;
fprintf('%d\n',gen);
individuals=struct('fitness',zeros(1,sizepop), 'chrom',[],'pgrid',[],'Ebat',[]);  %种群结构体
bestfitness=[];                                              %种群最佳适应度
bestchrom=[];                                                %适应度最好染色体
% 初始化种群
for i=1:sizepop
    individuals.chrom(i,:)=Code(lenchrom,bound);       %随机产生个体
    X=individuals.chrom(i,:);
    [money pgrid Ebat]=fun(X);
    individuals.fitness(i)=money;                     %个体适应度
    individuals.pgrid(i,:)=pgrid;
    individuals.Ebat(i,:)=Ebat;
end
%找最好的染色体
[bestfitness bestindex]=min(individuals.fitness);
bestchrom=individuals.chrom(bestindex,:);  %最好的染色体
bestpgrid=individuals.pgrid(bestindex,:);
bestEbat=individuals.Ebat(bestindex,:)

% 记录每一代进化中最好的适应度和平均适应度
trace(1)=bestfitness; 

%% 进化开始
for gen=2:MAXGEN
     fprintf('%d\n',gen)
     % 选择操作
     individuals=Select(individuals,sizepop); 
     % 交叉操作
     individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);
     % 变异操作
     individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[gen MAXGEN],bound);
    
    % 计算适应度 
    for j=1:sizepop
        X=individuals.chrom(j,:);
        [money pgrid Ebat]=fun(X);
        individuals.fitness(j)=money;
        individuals.pgrid(j,:)=pgrid;
        individuals.Ebat(j,:)=Ebat; 
    end
    
  %找到最小和最大适应度的染色体及它们在种群中的位置
    [newbestfitness,newbestindex]=min(individuals.fitness);
    
    % 代替上一次进化中最好的染色体
    if bestfitness>newbestfitness
        bestfitness=newbestfitness;
        bestchrom=individuals.chrom(newbestindex,:);
        bestpgrid=individuals.pgrid(newbestindex,:);
        bestEbat=individuals.Ebat(newbestindex,:);
    end
    trace(gen)=bestfitness; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束
time=toc;
%% 结果显示
plot(1:MAXGEN,trace);
disp(bestfitness);
disp(X);
disp(['运行时间time:',num2str(time)]);

结果图:

 GA主程序:

迭代结果:

完整代码:

(9条消息) 智能微电网PSO、GA优化算法-电子商务文档类资源-CSDN文库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习不好的电气仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值