智能算法(GA\PSO)微电网优化运行
粒子群算法主程序:
%% 个体初始化
gen=1;
fprintf('%d\n',gen);
individuals=struct('fitness',zeros(1,sizepop), 'chrom',[],'pgrid',[],'Ebat',[]); %种群结构体
bestfitness=[]; %种群最佳适应度
bestchrom=[]; %适应度最好染色体
% 初始化种群
for i=1:sizepop
individuals.chrom(i,:)=Code(lenchrom,bound); %随机产生个体
X=individuals.chrom(i,:);
[money pgrid Ebat]=fun(X);
individuals.fitness(i)=money; %个体适应度
individuals.pgrid(i,:)=pgrid;
individuals.Ebat(i,:)=Ebat;
end
%找最好的染色体
[bestfitness bestindex]=min(individuals.fitness);
bestchrom=individuals.chrom(bestindex,:); %最好的染色体
bestpgrid=individuals.pgrid(bestindex,:);
bestEbat=individuals.Ebat(bestindex,:)
% 记录每一代进化中最好的适应度和平均适应度
trace(1)=bestfitness;
%% 进化开始
for gen=2:MAXGEN
fprintf('%d\n',gen)
% 选择操作
individuals=Select(individuals,sizepop);
% 交叉操作
individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);
% 变异操作
individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[gen MAXGEN],bound);
% 计算适应度
for j=1:sizepop
X=individuals.chrom(j,:);
[money pgrid Ebat]=fun(X);
individuals.fitness(j)=money;
individuals.pgrid(j,:)=pgrid;
individuals.Ebat(j,:)=Ebat;
end
%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(individuals.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=individuals.chrom(newbestindex,:);
bestpgrid=individuals.pgrid(newbestindex,:);
bestEbat=individuals.Ebat(newbestindex,:);
end
trace(gen)=bestfitness; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束
time=toc;
%% 结果显示
plot(1:MAXGEN,trace);
disp(bestfitness);
disp(X);
disp(['运行时间time:',num2str(time)]);
结果图:
GA主程序:
迭代结果:
完整代码: