一、完全二叉树
除了叶子节点层,每一层都是满的,而且叶子节点层也是从左往右依次遍满的,就是完全二叉树。所以对于完全二叉树需要满足两个条件
1)任何一个节点有右无左,false
2)不违背1的情况下,第一个无左也无右的节点之后全是叶子节点。
根据分析,没办法从左树和右树上分别收集信息,所以用广度优先遍历。
public boolean isCompleteTree(TreeNode root){
if(root==null){
return true;
}
Queue<TreeNode> queue=new LinkedList();
queue.add(root);
//是否叶子节点
boolean leaf=false;
while(!queue.isEmpty()) {
int size=queue.size();
while(size-->0){
TreeNode node=queue.poll();
if(leaf&&(node.left!=null||node.right!=null)){
//已经找到了第一个叶子节点,但当前节点还有左或右
return false;
}
if(node.right!=null&&node.left==null){
//有右无左
return false;
}
if(node.right==null&&node.left==null){
//第一个叶子节点
leaf=true;
}
if(node.left!=null){
queue.add(node.left);
}
if(node.right!=null){
queue.add(node.right);
}
}
}
return true;
}
二、满二叉树
满二叉树是一种完全二叉树。每一层的节点数都达到当前层的最大节点数。比如第一层1个节点,第二层2个节点,第三层4个节点。每一层的节点个数是2^(h-1)个,h代表层数。h层总节点个数就是2^h-1个。
那么我们可以递归遍历整棵树,搜集节点数和高度,最后判断是否满足条件。
public boolean isFullTree(TreeNode root){
if(root==null){
return true;
}
Info info=process(root);
return info.nodeNum==(1<<info.height)-1;
}
public Info process(TreeNode root){
if(root==null){
return new Info(0,0);
}
Info leftInfo=process(root.left);
Info rightInfo=process(root.right);
int height=Math.max(leftInfo.height,rightInfo.height)+1;
int nodeNum=leftInfo.nodeNum+rightInfo.nodeNum+1;
return new Info(height,nodeNum);
}
class Info(){
public int height;
public int nodeNum;
public Info(int height, int nodeNum) {
this.height = height;
this.nodeNum = nodeNum;
}
}